Please use this identifier to cite or link to this item: https://hdl.handle.net/11147/9340
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSaçar Demirci, Müşerref Duygu-
dc.contributor.authorToprak, Mustafa-
dc.contributor.authorAllmer, Jens-
dc.date.accessioned2020-07-25T22:10:39Z-
dc.date.available2020-07-25T22:10:39Z-
dc.date.issued2016-
dc.identifier.issn1613-4516-
dc.identifier.urihttps://doi.org/10.2390/biecoll-jib-2016-303-
dc.identifier.urihttps://hdl.handle.net/11147/9340-
dc.description.abstractIdentification of microRNA (miRNA) precursors has seen increased efforts in recent years. The difficulty in experimental detection of pre-miRNAs increased the usage of computational approaches. Most of these approaches rely on machine learning especially classification. In order to achieve successful classification, many parameters need to be considered such as data quality, choice of classifier settings, and feature selection. For the latter one, we developed a distributed genetic algorithm on HTCondor to perform feature selection. Moreover, we employed two widely used classification algorithms libSVM and random forest with different settings to analyze the influence on the overall classification performance. In this study we analyzed 5 human retro virus genomes; Human endogenous retrovirus K113, Hepatitis B virus (strain ayw), Human T lymphotropic virus 1, Human T lymphotropic virus 2, Human immunodeficiency virus 2, and Human immunodeficiency virus 1. We then predicted pre-miRNAs by using the information from known virus and human pre-miRNAs. Our results indicate that these viruses produce novel unknown miRNA precursors which warrant further experimental validation.en_US
dc.language.isoenen_US
dc.publisherInformationsmanagement in der Biotechnologie e.V. (IMBio e.V.)en_US
dc.relation.ispartofJournal of Integrative Bioinformaticsen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.titleA machine learning approach for MicroRNA precursor prediction in retro-transcribing virus genomesen_US
dc.typeArticleen_US
dc.institutionauthorDemirci, Müşerref Duygu Saçar-
dc.institutionauthorToprak, Mustafa-
dc.institutionauthorAllmer, Jens-
dc.departmentİzmir Institute of Technology. Molecular Biology and Geneticsen_US
dc.departmentİzmir Institute of Technology. Computer Engineeringen_US
dc.identifier.volume13en_US
dc.identifier.issue5en_US
dc.identifier.wosWOS:000393395500002en_US
dc.identifier.scopus2-s2.0-85016443443en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.doi10.2390/biecoll-jib-2016-303-
dc.identifier.pmid28187417en_US
dc.relation.doi10.2390/biecoll-jib-2016-303en_US
dc.coverage.doi10.2390/biecoll-jib-2016-303en_US
dc.identifier.wosqualityN/A-
dc.identifier.scopusqualityQ2-
item.fulltextWith Fulltext-
item.grantfulltextopen-
item.languageiso639-1en-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.openairetypeArticle-
crisitem.author.dept04.03. Department of Molecular Biology and Genetics-
Appears in Collections:Computer Engineering / Bilgisayar Mühendisliği
Molecular Biology and Genetics / Moleküler Biyoloji ve Genetik
PubMed İndeksli Yayınlar Koleksiyonu / PubMed Indexed Publications Collection
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File SizeFormat 
10.1515_jib-2016-303.pdf922.69 kBAdobe PDFView/Open
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

5
checked on Nov 15, 2024

WEB OF SCIENCETM
Citations

7
checked on Nov 9, 2024

Page view(s)

206
checked on Nov 18, 2024

Download(s)

50
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.