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Summary 

Identification of microRNA (miRNA) precursors has seen increased efforts in recent 
years. The difficulty in experimental detection of pre-miRNAs increased the usage of 
computational approaches. Most of these approaches rely on machine learning especially 
classification. In order to achieve successful classification, many parameters need to be 
considered such as data quality, choice of classifier settings, and feature selection. For the 
latter one, we developed a distributed genetic algorithm on HTCondor to perform feature 
selection. Moreover, we employed two widely used classification algorithms libSVM and 
random forest with different settings to analyze the influence on the overall classification 
performance. In this study we analyzed 5 human retro virus genomes; Human 
endogenous retrovirus K113, Hepatitis B virus (strain ayw), Human T lymphotropic virus 
1, Human T lymphotropic virus 2, Human immunodeficiency virus 2, and Human 
immunodeficiency virus 1. We then predicted pre-miRNAs by using the information from 
known virus and human pre-miRNAs. Our results indicate that these viruses produce 
novel unknown miRNA precursors which warrant further experimental validation. 

1 Introduction 

MicroRNAs (miRNAs) are single-stranded, small, non-coding RNAs that are involved in the 
post-transcriptional regulation of gene expression. Due to this function miRNAs have been 
implicated with various cellular processes ranging from disease phenotypes to taking part in 
development. In the current version of miRBase (Release 21), there are miRNA hairpins from 
223 organisms indicating that miRNA function is a shared mechanism throughout evolution 
[1].  

MiRNAs have been associated with the complex cross-talk between host and pathogen [2] 
and are believed to be a key player in viral pathogenesis [3]. Although more research is 
required to have a clear understanding of the overall host-miRNA communications, many 
recent studies showed that viral miRNAs have potential effects on the host cell [4], [5]. 
However, the fact that miRNAs’ mode of action is especially beneficial for a virus makes 
viral miRNA identification a popular subject. By producing miRNAs, a virus can specifically 
modulate the abundance of host genes to create an environment suitable for replication. High 
evolution rates of a miRNAs [6–9] makes it easier to adapt to new host targets, and most 
importantly since the host itself produces miRNAs in the same manner, virus encoded 
miRNAs would not be immunogenic [4]. 

1 To whom correspondence should be addressed. Email: jens@allmer.de 
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The challenge for the identification of new miRNAs is that both miRNAs and their targets 
need to be expressed simultaneously [10]. This obstacle led to the development of 
computational approaches for miRNA prediction. There are two major methods used; 
homology based methods based on evolutionary relations and ab initio strategies mostly 
relying on machine learning (ML) [11]. Performance of the latter depends on many 
parameters like; quality of data sets, influence of features, and feature selection scheme as 
well as the choice of ML algorithm.  

With the thousands of features proposed to describe a miRNA hairpin it is particularly 
important to perform effective feature selection. We implemented a distributed genetic 
algorithm to select a feature subset while preserving high classification accuracy. The 
outcome was a feature subset consisting of 21 features with 99% accuracy. This performance 
was achieved after 108 generations of the genetic algorithm using a random forest classifier. 
In this study we created a workflow to predict miRNAs in 5 retro-transcribing virus genomes 
with human host (Human endogenous retrovirus K113, Hepatitis B virus (strain ayw), Human 
T lymphotropic virus 1, Human T lymphotropic virus 2, Human immunodeficiency virus 2, 
Human immunodeficiency virus 1), by using the information from known virus and human 
miRNAs. Our results indicate that these viruses might produce miRNA precursors which 
require further experimental validation.  

2 Architecture/Implementation 

Feature selection methods search the feature subset space consisting, in this case, of 2N 
possible feature combinations [12] where N is the number of features. Exhaustive search of 2N 
combinations is an NP-hard problem [13], so we used a genetic algorithm (GA), a heuristic 
embedded feature selection algorithm. 

2.1 Genetic Algorithm 

A genetic algorithm is an approach which mimics the evolution process for solving problems 
or modeling evolutionary systems within the computational environment [14]. It is commonly 
used to produce solutions for search and optimization problems. The intuition of the algorithm 
is based on ‘survival of fittest individual’ during a natural selection process [15]. We 
developed a distributed genetic algorithm for this feature selection process to enable 
processing in reasonable time. HTCondor [16] was used to distribute the workload of 
evaluation of feature subsets using the KNIME data analytics platform [12] workflow which 
was constructed to calculate classification accuracy of feature subsets. 500 feature subsets 
were generated randomly using a 2% fixed mutation probability. These were evolved over 
until a stop criterion was reached. During the evolution of generations, stop condition is 
determined in terms of improvement of the fittest individual. If the score of the best individual 
is not improved during five generation, the genetic algorithm is terminated. Therefore, after 
104 generation, the process was terminated since there was no further improvement for the 
fittest individual of the population. Then, the fittest individual’s features were used for 
creating machine learning models (Figure 1). The HTCondor implementation of the GA used 
in this study enables the use of unused cycles of our computer pools and office equipment. 
The use of a KNIME workflow as the fitness function enables the application of the GA for a 
wide range of optimization problems exemplified with feature selection for pre-miRNA 
detection in this study. The GA and all novel features will be presented elsewhere (Toprak et 
al., manuscript in preparation). 
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2.2 Machine Learning 

2.2.1   Feature Sets 

More than 800 features defining pre-miRNAs based on structural, sequential, probabilistic 
and thermodynamic characteristics were calculated for training data sets [17–19]. These data 
sets were used for selection of features via the genetic algorithm. All of the available features 
designed by us and found in the literature can be found and calculated with JLab miRNA 
feature calculator software available on our website (http://jlab.iyte.edu.tr/software/mirna) or 
other similar tools [20].  

2.2.2   Positive Data Sets 

Virus hairpin sequences from miRBase (308 hairpins), human miRNA hairpins that have 
experimental validation listed in miRTarBase [21] (Support Type (Weak) samples were 
filtered, 388 hairpins). This was done because a larger fraction of entries in miRTarBase 
seems to represent real pre-miRNAs as compared to miRBase [22]. 

2.2.3   Negative Data Set 

Pseudo hairpins obtained from Ng et al. The data set includes approximately 8000 hairpins 
[23], after calculation of features missing values were removed leading to 3589 hairpins.  
Genomes of Retro-transcribing viruses with human as host were obtained from NCBI 
(http://www.ncbi.nlm.nih.gov/genomes/GenomesGroup.cgi?taxid=35268&host=human). 
A 1:1 ratio was maintained between positive and negative data sets [18]. The negative data set 
was randomly sampled to match the number of positive samples.  

2.2.4   Model Generation 

Two classifiers with various settings were used for model generation; Random Forest with 3 
split criteria (Information Gain (IG), Information Gain Ratio (IGR), Gini Index (Gini)) and 
LIBSVM with 5 types and 4 kernels (C-SVC, nu-SVC, one-class SVM, epsilon-SVR, nu-
SVR and linear, polynomial, radial basis function, sigmoid). 10-fold cross validation with 
stratified sampling was applied during training (Figure 1). All learning and prediction 
workflows were generated and applied in KNIME [24]. 

Figure 1: Workflow for the classification system used in this study. 
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2.2.5   Prediction Data Sets 

Retro-transcribing viruses’ genomes were split into overlapping fragments (500/250) and 
transcribed into RNA sequences (T => U as + strand, the complement as - strand). For all of 
these 500 nt long fragments secondary structure was calculated using RNAfold [25] and 
hairpins were extracted. After filtering the hairpins according to their length distribution (min: 
36, max: 180) and removing the duplicate sequences, for 412 (+) strand and 420 (-) strand 
hairpins features are calculated. 

3 Application 

As a result of genetic algorithm, a feature subset consisting of 21 features remained after 104 
generation. This feature set achieved 99% accuracy and was used in training classifiers 
(Figure 1).  

The model was analyzed and optimized using multiple settings such as different kernels for 
support vector machines (SVM). Most models achieved high areas under the receiver 
operating characteristic (ROC) curve, but interestingly, most SVM models led to random 
decisions (Figure 2). 

Figure 2: ROC curve graph from the case virus positive data set is used for model generation. 
False positive rate (x-axis) and true positive rate (y-axis) values are shown for different 
scenarios. IG: Information Gain; IGR: IG Ratio; Gini: Gini Index SVM types: C-SVC, nu-SVC, 
one-class SVM, epsilon-SVR, nu-SVR; Kernels: linear, polynomial, RBF: radial basis function, 
sigmoid. 

Application of the trained models to the hairpins extracted from the virus genomes revealed a 
number of putative pre-miRNAs conforming to the human model at a prediction score cutoff 
of 0.95 (Table 1). Such pre-miRNAs may give the virus leverage to modulate its host gene 
expression and create a suitable environment for its replication. Figure 2 shows that the usage 
of SVM is highly dependent on optimization of its parameters whereas RF led to acceptable 
outcomes for all tested scenarios. Overall, RF achieved an accuracy better than 0.99 for all 
three tested split criteria.  
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Table 1: Number of predicted hairpins in 5 virus genomes by using models learned from known 
virus hairpins. RF: random forest, + and - indicate strands. Prediction score cut-off value is 0.95. 

Viral Genome LibSVM(-) LibSVM(+) RF(-) RF(+) both(-) both(+) 
Human endogenous 

retrovirus K113 
22 18 2 2 2 1 

Hepatitis B  virus 
(strain_ayw) 

13 9 4 3 3 3 

Human T lymphotropic 
virus 1 

45 10 15 1 14 1 

Human T lymphotropic 
virus 2 

37 14 9 1 8 1 

Human immunodeficiency virus 2 17 14 3 2 1 2 

Human immunodeficiency virus 1 23 25 7 2 7 1 

Out of three entries for HIV hairpins in miRBase, we only identified hiv1-mir-TAR with 
libSVM but it did not pass our prediction score cut-off value (0.95) for random forest (virus 
learning data model; libSVM score: 0.98, RF score: 0.94, human learning data model: 
libSVM score: 0.96, RF score: 0.88). Overall RF selected less pre-miRNAs (Table 1) which is 
likely due to its higher accuracy when compared to SVM in this study. Further filtering by 
requiring both LibSVM and RF to accept a pre-miRNA leads to a very small amount of 
putative pre-miRNAs (Table 1). While Table 1 considers pre-miRNA detected with a model 
based on known viral pre-miRNA examples, Table 2 contains those that pass a model trained 
on known human pre-miRNAs. 

Table 2: Number of predicted hairpins in 5 virus genomes by using models learned from known 
human hairpins. RF: random forest, + and - indicate strands. Prediction score cut-off value is 
0.95. 

Viral Genome LibSVM(-) LibSVM(+) RF(-) RF(+) both (-) both(+) 
Human endogenous retrovirus K113 4 5 2 4 1 3 

Hepatitis B  virus (strain_ayw) 3 2 2 
Human T lymphotropic virus 1 9 3 3 

Human T lymphotropic virus 2 14 1 4 2 
Human immunodeficiency virus 2 4 2 1 1 
Human immunodeficiency virus 1 4 11 1 1 1 

By using the hairpins that passed both models in Table 1 and 2, we searched for possible 
human target genes of these viral miRNAs in the human genome. To achieve this, online 
miRNA target prediction tool psRNATarget (http://plantgrn.noble.org/psRNATarget/) was 
used (Table 3). As mature miRNA input, the viral hairpins that were divided into 30nt long 
fragments with 15nt overlaps were used. The human genome pool available in psRNATarget 
server was used for target search of these mature sequences. All of the analyzed miRNAs 
were used in a single target search. At the end, the targets were listed per organism (Table 3). 
Note that, one gene might be targeted by different miRNAs so they appear in the table more 
than once.  
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Table 3: Targets of predicted viral miRNAs in the human genome. 

Source Targets 

Hepatitis B virus 
 (strain ayw) 

ACP1, STK38L, BEND2, ACP1, STK38L, BEND2, WWP2, NEO1, NEO1, WWP2, 
NEO1, NEO1, CLDN12, ZNF829, PPIL4, GYPA, GYPA, PHKA2, PHKA2, ABCA13, 
ZNF711, ACOX1, ACOX1, SH3RF1, ZNF677, BRPF3, FCRL5, FCRL5, GLI3, 
CCDC129, ERMN, MPZL1, MPZL1, RBM20, SLC24A3, IFIT5, POLR2M, GCOM1, 
GCOM1, MCHR2, DISC1, DISC1, DISC1, NSL1, NSL1, PRKCI, WWP2, ZNF704, 
GPR107, PBX1, PBX1, PSME3, PSME3, PSME3, PSME3, PDE9A, RBM5, RBM5, 
RBM5, RBM5, KCNK7, MARCKS, DDX51, NUFIP2, NUFIP2, SLC25A37, OBFC1, 
PHACTR2, ACP1, STK38L, BEND2, ACP1, STK38L, BEND2, WWP2, NEO1, NEO1, 
WWP2, NEO1, NEO1 

Human T-
lymphotropic 

virus 1 

MAP1A, ZC3H4, IGF2, SPRED2, CACNB4, ARF3, NCOA1, NCOA1, CAMK2N2, 
FSTL1, KRAS, KRAS, VPS26B, COL18A1, ALG2, SSH2, CHRDL1, UPP2, SLC27A4, 
TUSC5, FOCAD, RACGAP1, RACGAP1, RACGAP1, RACGAP1, RACGAP1, 
RACGAP1, RACGAP1, RACGAP1, RACGAP1, RACGAP1, RACGAP1, RACGAP1, 
RACGAP1, FLRT3, ATG16L1, CTBS, DCLK3, ZFX, ZFX, PROX1, CTBS, DCLK3, 
ZFX, ZFX, PROX1, PNPLA8, PNPLA8, CASP3, CASP3, TNPO1, TNPO1, SERINC5, 
XIAP, CLEC2B, ARHGEF7, TSHZ2, SH2D4A, SH2D4A, GMFB, VAMP2, CTBS, 
DCLK3, ZFX, ZFX, PROX1, CTBS, DCLK3, ZFX, ZFX, PROX1, PNPLA8, PNPLA8, 
CASP3, CASP3, TNPO1, TNPO1, PARD6G, ABHD17C, SLAIN2, CDK6, SELL, 
CACNB4, SZT2, C11orf87, CXorf40A, IPPK, SC5D, KANK2, HECTD4, DDX17, 
DDX17, DCUN1D1, CAMKK2, CAMKK2, CAMKK2, CAMKK2, CAMKK2, 
CAMKK2, CAMKK2, CAMKK2, CAMKK2, CAMKK2, CAMKK2, CAMKK2, 
CAMKK2, CAMKK2, CAMKK2, CAMKK2, CAMKK2, CAMKK2, STX17, CABLES1, 
CDH4, PGAP3, DDR1, ELAVL1, KCNMB1, MAF, TNFSF15, SCAMP1, VMA21, 
SLC30A10, TAF9B, FZR1, STK40, ARFIP1 

Human T-
lymphotropic 

virus 2 

PTPDC1, PAX6, PAX6, PAX6, PAX6, BCL10, MEX3A, ARVCF, PPARA, NSL1, NSL1, 
SH3GLB1, BRIP1, BRIP1, TP53RK, CDH13, INO80D, DDHD1, DDHD1, EPB41, 
EPB41, PSD4, FREM2, CRTC3, PSD4, FREM2, CRTC3, ZNHIT6, GRIK3, ZNHIT6, 
GRIK3, NOMO3, NOMO1, ASB11, HTN3, BCAR1, BCAR1, ASB6, ESYT2, ASB6, 
HMBOX1, SYT13, PBX1, PBX1, PBX1, PSMA5, DDHD1, DDHD1, EPB41, EPB41, 
PSD4, FREM2, CRTC3, PSD4, FREM2, CRTC3, ZNHIT6, GRIK3, ZNHIT6, GRIK3, 
RHBDL3, DDHD1, EPB41, PSD4, ZNHIT6, GRIK3, MME, C21orf33, MYF6, DHX33, 
DHX33 

Human 
endogenous 

retrovirus K113 

METTL21A, NEK5, THEM4, CFLAR, CFLAR, CFLAR, CFLAR, NEK5, METTL21A, 
GATAD2B, IL24, IL24, LCOR, LCOR, NDRG1, CFLAR, CFLAR, NCS1, NEK5, 
METTL21A, CFLAR, CFLAR, OTUD4, ARL8B, NEK5, METTL21A, CFLAR, CFLAR, 
KCMF1, AP2B1, AP2B1, XG, MBLAC2, METTL21A, NEK5, CFLAR, CFLAR, 
THEM4, NEK5, CFLAR, CFLAR, GFRA1, CBLN2, SNX30, ATP6V0A2, ATP6V0A2, 
HBE1, GSAP, C10orf32, C10orf32, MLLT4, MLLT4, MLLT4, MLLT4, MLLT4, 
MLLT4, MLLT4, HHAT, ARRDC2, TMEM170B, DISC1, DISC1, DISC1, RALGPS2, 
CTDSPL2, CTDSPL2, CTDSPL2, CTDSPL2, CTDSPL2, AKAP12, STXBP3, ZNF845, 
SNED1, JPH2, GGTLC2, ZNF264, ZNF264, SLC9A7, GSE1, SLC7A10, SLC25A24, 
SLC25A24, SGMS1, CREB1, CREB1, CREB1, CREB1, CREB1, ZFP91, MIS18BP1, 
UNC5C, PLEKHG4B, QRFPR, FRMD8, ZNF518A, HNRNPK, HNRNPK, XKR7, 
EPHA10, WDR37, NCMAP, ZNF780A, CORO2B, CHML, ZNF592, SMCR8, SPEF1 

Human 
immunodeficien

cy virus 1 

RAP2B, KIR2DL5A, KIR2DL5B, KIR2DS5, RASSF8, OAZ1, ACTC1, UNC80, 
KLHDC3, FGFRL1, THAP1, THAP1, ADCY1, SATL1, AQP11, TMEM167A, GRIN2A, 
DLG1, ABHD5, SCN8A, ZFP91, SLC6A3, TESPA1, SEPT11, ZBTB44, CPNE8, RET, 
RET, MCUR1, FPR3 

Human 
immunodeficien

cy virus 2 

EFS, IGF1R, IGF1R, EPT1, MIS18A, POLDIP2, DPM2, ARHGAP26, RBM46, RBM46, 
PHLDA1, TOM1L2, SLC9A7, ZNF3, ZNF3, POLR2J, NUP50, NUP50, NUP50, NUP50, 
SENP8, SART3, PTBP3, LMLN, LMLN, CYP19A1, NXPH2 
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4 Discussion 

MiRNAs and their actions in various cellular processes have attracted great interest. However, 
there are many obstacles to overcome to achieve a better understanding in the overall miRNA 
involved pathways. In recent years, potential interactions between host and parasite’s 
miRNAs have been proposed which further increased the complexity of miRNA analyses. 
We tested the influence of some of the elements in a classification system. Our previous work 
showed that selection of features has a high impact on accuracy of the classifier [17]. To 
obtain a high quality feature list we developed a genetic algorithm for feature selection. This 
is especially important since about a thousand features have been proposed for miRNA 
hairpin prediction. The genetic algorithm was able to decrease the number of features required 
to 21 at a very high accuracy and area under the ROC curve. 
One of the factors affecting overall classification performance is the choice and settings of 
classifiers. By applying different criteria with two widely used classification methods libSVM 
and random forest to virus and human data, we obtained quite a big difference among 
classifier performances.  
Our results indicate that the viruses examined in this study have the capacity to produce 
functional miRNAs. Most of the predictions we obtained seem to have a secondary structure 
that can be recognized by miRNA biogenesis proteins like Drosha or Dicer (Table 1, Table 2). 
Furthermore, there are reports claiming that hiv1-mir-TAR is processed by Dicer in vitro [4] 
Nevertheless there is no agreement for the possible HIV-1 generated miRNAs so more 
experimental analysis is required. The number of predicted pre-miRNAs from virus genomes 
in this study shows that with the approach used here it is possible to experimentally validate 
them.  
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