Please use this identifier to cite or link to this item:
https://hdl.handle.net/11147/8806
Title: | The Effect of Biomimetic Coating and Cuttlebone Microparticle Reinforcement on the Osteoconductive Properties of Cellulose-Based Scaffolds | Authors: | Palaveniene, Alisa Songailiene, Kristina Baniukaitiene, Odeta Tamburacı, Sedef Kimna, Ceren Tıhmınlıoğlu, Funda Liesiene, Jolanta |
Keywords: | Cuttlebone Bone scaffold Biomimetic Simulated body fluid Osteoconductive |
Publisher: | Elsevier | Abstract: | Polymer-based scaffolds have already gained popularity in many biomedical applications due to convenient routes for fabrication and favourable structural, physicochemical and functional characteristics. However, polymeric scaffolds lack osteoconductivity and some synthetic polymers carry the risk of inflammatory response caused by degradation by-products. Those facts limit their practical use in bone tissue engineering. In this study, three-dimensional (3D) porous scaffolds from naturally derived polymer, namely regenerated cellulose, were prepared using a non-hydrolytic sol-gel and lyophilization techniques. To induce osteoconductive properties of the polymeric scaffolds, cuttlebone microparticles were immobilized and the surface coating was achieved via in vitro mineralization using 10-fold concentrated simulated body fluid (10x SBF). Biogenic activity of cuttlebone is explained by its chemical composition, which includes polysaccharide beta-chitin and macro-, micro- and trace elements favourable for mineralization. Parallel the scaffolds were examined during long-term (24 weeks) in vitro mineralization in 1x SBF for the purpose to investigate apatite-forming ability of the scaffolds. A nice cauliflower-like structures and needle-like dents of the spherical aggregates, which are characteristic to hydroxyapatite precursors, were observed on the surface of cellulose/cuttlebone scaffolds by SEM. 10x SBF coating enhanced cell attachment to the scaffolds because SBF elements are known to increase bioactivity by inducing re-deposition of carbonate apatite crystallites on scaffold surface. Additionally, calcium and phosphate depositions were clearly observed on the developed scaffolds using von Kossa and Alizarin Red S staining. Proliferative and osteoconductive effects on the osteoblast-like MG-63 cells demonstrate the cellulose/cuttlebone scaffolds soaked in 10x SBF as a favourable material for bone tissue engineering. (C) 2019 Elsevier B.V. All rights reserved. | URI: | https://doi.org/10.1016/j.ijbiomac.2019.10.213 https://hdl.handle.net/11147/8806 |
ISSN: | 0141-8130 1879-0003 |
Appears in Collections: | Chemical Engineering / Kimya Mühendisliği PubMed İndeksli Yayınlar Koleksiyonu / PubMed Indexed Publications Collection Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection |
Files in This Item:
File | Size | Format | |
---|---|---|---|
1-s2.0-S0141813019336372-main.pdf | 2.85 MB | Adobe PDF | View/Open |
CORE Recommender
SCOPUSTM
Citations
18
checked on Dec 20, 2024
WEB OF SCIENCETM
Citations
15
checked on Nov 9, 2024
Page view(s)
2,988
checked on Dec 23, 2024
Download(s)
252
checked on Dec 23, 2024
Google ScholarTM
Check
Altmetric
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.