Please use this identifier to cite or link to this item: https://hdl.handle.net/11147/8806
Full metadata record
DC FieldValueLanguage
dc.contributor.authorPalaveniene, Alisa-
dc.contributor.authorSongailiene, Kristina-
dc.contributor.authorBaniukaitiene, Odeta-
dc.contributor.authorTamburacı, Sedef-
dc.contributor.authorKimna, Ceren-
dc.contributor.authorTıhmınlıoğlu, Funda-
dc.contributor.authorLiesiene, Jolanta-
dc.date.accessioned2020-07-18T08:31:26Z-
dc.date.available2020-07-18T08:31:26Z-
dc.date.issued2020-
dc.identifier.issn0141-8130-
dc.identifier.issn1879-0003-
dc.identifier.urihttps://doi.org/10.1016/j.ijbiomac.2019.10.213-
dc.identifier.urihttps://hdl.handle.net/11147/8806-
dc.description.abstractPolymer-based scaffolds have already gained popularity in many biomedical applications due to convenient routes for fabrication and favourable structural, physicochemical and functional characteristics. However, polymeric scaffolds lack osteoconductivity and some synthetic polymers carry the risk of inflammatory response caused by degradation by-products. Those facts limit their practical use in bone tissue engineering. In this study, three-dimensional (3D) porous scaffolds from naturally derived polymer, namely regenerated cellulose, were prepared using a non-hydrolytic sol-gel and lyophilization techniques. To induce osteoconductive properties of the polymeric scaffolds, cuttlebone microparticles were immobilized and the surface coating was achieved via in vitro mineralization using 10-fold concentrated simulated body fluid (10x SBF). Biogenic activity of cuttlebone is explained by its chemical composition, which includes polysaccharide beta-chitin and macro-, micro- and trace elements favourable for mineralization. Parallel the scaffolds were examined during long-term (24 weeks) in vitro mineralization in 1x SBF for the purpose to investigate apatite-forming ability of the scaffolds. A nice cauliflower-like structures and needle-like dents of the spherical aggregates, which are characteristic to hydroxyapatite precursors, were observed on the surface of cellulose/cuttlebone scaffolds by SEM. 10x SBF coating enhanced cell attachment to the scaffolds because SBF elements are known to increase bioactivity by inducing re-deposition of carbonate apatite crystallites on scaffold surface. Additionally, calcium and phosphate depositions were clearly observed on the developed scaffolds using von Kossa and Alizarin Red S staining. Proliferative and osteoconductive effects on the osteoblast-like MG-63 cells demonstrate the cellulose/cuttlebone scaffolds soaked in 10x SBF as a favourable material for bone tissue engineering. (C) 2019 Elsevier B.V. All rights reserved.en_US
dc.language.isoenen_US
dc.publisherElsevieren_US
dc.relation.ispartofInternational Journal of Biological Macromoleculesen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectCuttleboneen_US
dc.subjectBone scaffolden_US
dc.subjectBiomimeticen_US
dc.subjectSimulated body fluiden_US
dc.subjectOsteoconductiveen_US
dc.titleThe effect of biomimetic coating and cuttlebone microparticle reinforcement on the osteoconductive properties of cellulose-based scaffoldsen_US
dc.typeArticleen_US
dc.institutionauthorTamburacı, Sedef-
dc.institutionauthorKimna, Ceren-
dc.institutionauthorTıhmınlıoğlu, Funda-
dc.departmentİzmir Institute of Technology. Chemical Engineeringen_US
dc.identifier.volume152en_US
dc.identifier.startpage1194en_US
dc.identifier.endpage1204en_US
dc.identifier.wosWOS:000530068000118en_US
dc.identifier.scopus2-s2.0-85076246574en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.doi10.1016/j.ijbiomac.2019.10.213-
dc.identifier.pmid31759022en_US
dc.relation.doi10.1016/j.ijbiomac.2019.10.213en_US
dc.coverage.doi10.1016/j.ijbiomac.2019.10.213en_US
dc.identifier.wosqualityQ1-
dc.identifier.scopusqualityQ1-
item.fulltextWith Fulltext-
item.grantfulltextopen-
item.languageiso639-1en-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.openairetypeArticle-
crisitem.author.dept03.02. Department of Chemical Engineering-
Appears in Collections:Chemical Engineering / Kimya Mühendisliği
PubMed İndeksli Yayınlar Koleksiyonu / PubMed Indexed Publications Collection
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File SizeFormat 
1-s2.0-S0141813019336372-main.pdf2.85 MBAdobe PDFView/Open
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

17
checked on Nov 15, 2024

WEB OF SCIENCETM
Citations

15
checked on Nov 9, 2024

Page view(s)

2,958
checked on Nov 18, 2024

Download(s)

232
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.