Please use this identifier to cite or link to this item: https://hdl.handle.net/11147/11372
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAnıl İnevi, Müge-
dc.contributor.authorDelikoyun, Kerem-
dc.contributor.authorMeşe Özçivici, Gülistan-
dc.contributor.authorTekin, Hüseyin Cumhur-
dc.contributor.authorÖzçivici, Engin-
dc.date.accessioned2021-11-06T09:47:00Z-
dc.date.available2021-11-06T09:47:00Z-
dc.date.issued2021-
dc.identifier.issn0006-3592-
dc.identifier.issn1097-0290-
dc.identifier.urihttps://doi.org/10.1002/bit.27941-
dc.identifier.urihttps://hdl.handle.net/11147/11372-
dc.description.abstractDiamagnetic levitation is an emerging technology for remote manipulation of cells in cell and tissue level applications. Low-cost magnetic levitation configurations using permanent magnets are commonly composed of a culture chamber physically sandwiched between two block magnets that limit working volume and applicability. This work describes a single ring magnet-based magnetic levitation system to eliminate physical limitations for biofabrication. Developed configuration utilizes sample culture volume for construct size manipulation and long-term maintenance. Furthermore, our configuration enables convenient transfer of liquid or solid phases during the levitation. Before biofabrication, we first calibrated/ the platform for levitation with polymeric beads, considering the single cell density range of viable cells. By taking advantage of magnetic focusing and cellular self-assembly, millimeter-sized 3D structures were formed and maintained in the system allowing easy and on-site intervention in cell culture with an open operational space. We demonstrated that the levitation protocol could be adapted for levitation of various cell types (i.e., stem cell, adipocyte and cancer cell) representing cells of different densities by modifying the paramagnetic ion concentration that could be also reduced by manipulating the density of the medium. This technique allowed the manipulation and merging of separately formed 3D biological units, as well as the hybrid biofabrication with biopolymers. In conclusion, we believe that this platform will serve as an important tool in broad fields such as bottom-up tissue engineering, drug discovery and developmental biology.en_US
dc.description.sponsorshipTurkiye Bilimsel ve Teknolojik Arastirma Kurumu, Grant/Award Number: 119M755en_US
dc.language.isoenen_US
dc.publisherWileyen_US
dc.relation.ispartofBiotechnology And Bioengineeringen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectBiofabricationen_US
dc.subjectCellular spheroidsen_US
dc.subjectMagnetic levitationen_US
dc.subjectScaffold freeen_US
dc.subjectStem cellsen_US
dc.titleMagnetic levitation assisted biofabrication, culture, and manipulation of 3D cellular structures using a ring magnet based setupen_US
dc.typeArticleen_US
dc.authorid0000-0003-2854-3472-
dc.authorid0000-0003-4464-0475-
dc.authorid0000-0002-3294-049X-
dc.departmentİzmir Institute of Technology. Bioengineeringen_US
dc.departmentİzmir Institute of Technology. Molecular Biology and Geneticsen_US
dc.identifier.wosWOS:000703410900001en_US
dc.identifier.scopus2-s2.0-85116344892en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.doi10.1002/bit.27941-
dc.identifier.pmid34559409en_US
dc.authorwosidAnil Inevi, Muge/K-1025-2016-
dc.identifier.wosqualityQ2-
dc.identifier.scopusqualityQ1-
item.grantfulltextopen-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.openairetypeArticle-
item.languageiso639-1en-
item.fulltextWith Fulltext-
crisitem.author.dept03.01. Department of Bioengineering-
crisitem.author.dept03.01. Department of Bioengineering-
crisitem.author.dept04.03. Department of Molecular Biology and Genetics-
crisitem.author.dept03.01. Department of Bioengineering-
crisitem.author.dept03.01. Department of Bioengineering-
Appears in Collections:Bioengineering / Biyomühendislik
Molecular Biology and Genetics / Moleküler Biyoloji ve Genetik
PubMed İndeksli Yayınlar Koleksiyonu / PubMed Indexed Publications Collection
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File SizeFormat 
Biotech Bioengineering-2021.pdf8.71 MBAdobe PDFView/Open
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

10
checked on Apr 5, 2024

WEB OF SCIENCETM
Citations

10
checked on Mar 23, 2024

Page view(s)

582
checked on Apr 22, 2024

Download(s)

20
checked on Apr 22, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.