Please use this identifier to cite or link to this item:
Title: A new drug testing platform based on 3D tri-culture in lab-on-a-chip devices
Authors: Gökçe, Begüm
Akçok, İsmail
Çağır, Ali
Pesen Okvur, Devrim
Keywords: Drug discovery
Breast cancer cell
3D cell culture
Tri-culture, doxorubicin
Issue Date: 2020
Publisher: Elsevier
Abstract: Drug discovery has a 90% rate of failure because preclinical platforms for drug testing do not mimic the in vivo conditions. Doxorubicin (DOX) is a commonly used drug to treat breast cancer patients even though it has side effects. Lab-on-a-chip (LOC) devices provide spatial control at the micrometer scale and can thus emulate the cancer microenvironment. Here, using a multidisciplinary approach, a new drug testing platform based on 3D tri-culture in LOC devices was developed. Breast cancer cells alone or with normal mammary epithelial cells and macrophages were cultured in matrigel in LOC devices. The platform was used to test DOX and (R)-4'-methylklavuzon (KLA), which is a new anti-cancer drug candidate. Results showed that DOX and KLA were equally effective on breast cancer cells in 3D monoculture. KLA produced 26% less death for breast cancer cells than DOX in 3D tri-culture. More importantly, DOX was not selective between breast cancer cells and normal mammary epithelial cells in 3D tri- culture whereas KLA caused 56% less cell death than DOX for normal mammary epithelial cells. Results strongly recommend that 3D tri-culture in LOC devices be used for assessment of drug toxicity at the preclinical stage.
Description: PubMed: 32927074
ISSN: 0928-0987
Appears in Collections:Chemistry / Kimya
Molecular Biology and Genetics / Moleküler Biyoloji ve Genetik
PubMed İndeksli Yayınlar Koleksiyonu / PubMed Indexed Publications Collection
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection

Files in This Item:
File SizeFormat 
1-s2.0-S0928098720303304-main.pdf2.97 MBAdobe PDFView/Open
Show full item record

CORE Recommender


checked on Dec 9, 2023


checked on Jun 17, 2023

Page view(s)

checked on Dec 11, 2023


checked on Dec 11, 2023

Google ScholarTM



Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.