Please use this identifier to cite or link to this item: https://hdl.handle.net/11147/9906
Full metadata record
DC FieldValueLanguage
dc.contributor.authorDelikoyun, Kerem-
dc.contributor.authorÇine, Ersin-
dc.contributor.authorAnıl İnevi, Müge-
dc.contributor.authorÖzçivici, Engin-
dc.contributor.authorÖzuysal, Mustafa-
dc.contributor.authorTekin, Hüseyin Cumhur-
dc.date.accessioned2021-01-24T18:29:05Z-
dc.date.available2021-01-24T18:29:05Z-
dc.date.issued2019-
dc.identifier.isbn978-173341900-0-
dc.identifier.urihttps://hdl.handle.net/11147/9906-
dc.descriptionChemical and Biological Microsystems Society (CBMS)en_US
dc.description.abstractCell viability analysis is one of the most widely used protocols in the fields of biomedical sciences. Traditional methods are prone to human error and require high-cost and bulky instrumentations. Lensless digital inline holographic microscopy (LDIHM) offers low-cost and high resolution imaging. However, recorded holograms should be digitally reconstructed to obtain real images, which requires intense computational work. We introduce a deep transfer learning-based cell viability classification method that directly processes the hologram without reconstruction. This new model is only trained once and viability of each cell can be predicted from its hologram. © 2019 CBMS-0001.en_US
dc.description.sponsorshipFinancial support from The Scientific and Technological Research Council of Turkey (119M052) and Turkish Council of Higher Education for 100/2000 CoHE doctoral scholarship (K.D.) is gratefully acknowledged.en_US
dc.language.isoenen_US
dc.publisherThe Chemical and Biological Microsystems Society (CBMS)en_US
dc.relation.ispartof23rd International Conference on Miniaturized Systems for Chemistry and Life Sciences, MicroTAS 2019en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectCell viability analysisen_US
dc.subjectDeep convolutional neural networken_US
dc.subjectLensless holographic microscopyen_US
dc.titleDeep convolutional neural networks for viability analysis directly from cell holograms captured using lensless holographic microscopyen_US
dc.typeConference Objecten_US
dc.institutionauthorDelikoyun, Kerem-
dc.institutionauthorÇine, Ersin-
dc.institutionauthorAnıl İnevi, Müge-
dc.institutionauthorÖzçivici, Engin-
dc.institutionauthorÖzuysal, Mustafa-
dc.institutionauthorTekin, Hüseyin Cumhur-
dc.departmentİzmir Institute of Technology. Bioengineeringen_US
dc.departmentİzmir Institute of Technology. Computer Engineeringen_US
dc.identifier.startpage1462en_US
dc.identifier.endpage1463en_US
dc.identifier.scopus2-s2.0-85094963341en_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.identifier.wosqualityN/A-
dc.identifier.scopusqualityN/A-
item.fulltextNo Fulltext-
item.grantfulltextnone-
item.languageiso639-1en-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.openairetypeConference Object-
crisitem.author.dept03.01. Department of Bioengineering-
crisitem.author.dept03.01. Department of Bioengineering-
crisitem.author.dept03.01. Department of Bioengineering-
crisitem.author.dept03.04. Department of Computer Engineering-
crisitem.author.dept03.01. Department of Bioengineering-
Appears in Collections:Bioengineering / Biyomühendislik
Computer Engineering / Bilgisayar Mühendisliği
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
Show simple item record



CORE Recommender

Page view(s)

5,688
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.