Please use this identifier to cite or link to this item:
https://hdl.handle.net/11147/9906
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Delikoyun, Kerem | - |
dc.contributor.author | Çine, Ersin | - |
dc.contributor.author | Anıl İnevi, Müge | - |
dc.contributor.author | Özçivici, Engin | - |
dc.contributor.author | Özuysal, Mustafa | - |
dc.contributor.author | Tekin, Hüseyin Cumhur | - |
dc.date.accessioned | 2021-01-24T18:29:05Z | - |
dc.date.available | 2021-01-24T18:29:05Z | - |
dc.date.issued | 2019 | - |
dc.identifier.isbn | 978-173341900-0 | - |
dc.identifier.uri | https://hdl.handle.net/11147/9906 | - |
dc.description | Chemical and Biological Microsystems Society (CBMS) | en_US |
dc.description.abstract | Cell viability analysis is one of the most widely used protocols in the fields of biomedical sciences. Traditional methods are prone to human error and require high-cost and bulky instrumentations. Lensless digital inline holographic microscopy (LDIHM) offers low-cost and high resolution imaging. However, recorded holograms should be digitally reconstructed to obtain real images, which requires intense computational work. We introduce a deep transfer learning-based cell viability classification method that directly processes the hologram without reconstruction. This new model is only trained once and viability of each cell can be predicted from its hologram. © 2019 CBMS-0001. | en_US |
dc.description.sponsorship | Financial support from The Scientific and Technological Research Council of Turkey (119M052) and Turkish Council of Higher Education for 100/2000 CoHE doctoral scholarship (K.D.) is gratefully acknowledged. | en_US |
dc.language.iso | en | en_US |
dc.publisher | The Chemical and Biological Microsystems Society (CBMS) | en_US |
dc.relation.ispartof | 23rd International Conference on Miniaturized Systems for Chemistry and Life Sciences, MicroTAS 2019 | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Cell viability analysis | en_US |
dc.subject | Deep convolutional neural network | en_US |
dc.subject | Lensless holographic microscopy | en_US |
dc.title | Deep convolutional neural networks for viability analysis directly from cell holograms captured using lensless holographic microscopy | en_US |
dc.type | Conference Object | en_US |
dc.institutionauthor | Delikoyun, Kerem | - |
dc.institutionauthor | Çine, Ersin | - |
dc.institutionauthor | Anıl İnevi, Müge | - |
dc.institutionauthor | Özçivici, Engin | - |
dc.institutionauthor | Özuysal, Mustafa | - |
dc.institutionauthor | Tekin, Hüseyin Cumhur | - |
dc.department | İzmir Institute of Technology. Bioengineering | en_US |
dc.department | İzmir Institute of Technology. Computer Engineering | en_US |
dc.identifier.startpage | 1462 | en_US |
dc.identifier.endpage | 1463 | en_US |
dc.identifier.scopus | 2-s2.0-85094963341 | en_US |
dc.relation.publicationcategory | Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı | en_US |
dc.identifier.wosquality | N/A | - |
dc.identifier.scopusquality | N/A | - |
item.fulltext | No Fulltext | - |
item.grantfulltext | none | - |
item.languageiso639-1 | en | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.cerifentitytype | Publications | - |
item.openairetype | Conference Object | - |
crisitem.author.dept | 03.01. Department of Bioengineering | - |
crisitem.author.dept | 03.01. Department of Bioengineering | - |
crisitem.author.dept | 03.01. Department of Bioengineering | - |
crisitem.author.dept | 03.04. Department of Computer Engineering | - |
crisitem.author.dept | 03.01. Department of Bioengineering | - |
Appears in Collections: | Bioengineering / Biyomühendislik Computer Engineering / Bilgisayar Mühendisliği Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection |
CORE Recommender
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.