Please use this identifier to cite or link to this item: https://hdl.handle.net/11147/9393
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAyanzadeh, Aydın-
dc.contributor.authorYağar, Hüseyin Onur-
dc.contributor.authorYalçın Özuysal, Özden-
dc.contributor.authorPesen Okvur, Devrim-
dc.contributor.authorTöreyin, Behçet Uğur-
dc.contributor.authorUnay, Devrim-
dc.contributor.authorÖnal, Sevgi-
dc.date.accessioned2020-07-25T22:10:44Z-
dc.date.available2020-07-25T22:10:44Z-
dc.date.issued2019-
dc.identifier.isbn978-1-7281-2420-9-
dc.identifier.urihttps://hdl.handle.net/11147/9393-
dc.descriptionMedical Technologies Congress (TIPTEKNO) -- OCT 03-05, 2019 -- Izmir, TURKEYen_US
dc.description.abstractThe quantitative and qualitative ascertainment of cell culture is integral to the robust determination of the cell structure analysis. Microscopy cell analysis and the epithet structures of cells in cell cultures are momentous in the fields of the biological research process. In this paper, we addressed the problem of phase-contrast microscopy under cell segmentation application. In our proposed method, we utilized the state-of-the-art deep learning models trained on our proposed dataset. Due to the low number of annotated images, we propose a multi-resolution network which is based on the U-Net architecture. Moreover, we applied multi-combination augmentation to our dataset which has increased the performance of segmentation accuracy significantly. Experimental results suggest that the proposed model provides superior performance in comparison to traditional state-of-the-art segmentation algorithms.en_US
dc.language.isoenen_US
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en_US
dc.relation.ispartof2019 Medical Technologies Congress (TIPTEKNO)en_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectDeep learningen_US
dc.subjectPhase-Contrast microscopyen_US
dc.subjectCell segmentationen_US
dc.titleCell segmentation of 2D phase-contrast microscopy images with deep learning methoden_US
dc.typeConference Objecten_US
dc.institutionauthorYalçın Özuysal, Özden-
dc.institutionauthorPesen Okvur, Devrim-
dc.institutionauthorÖnal, Sevgi-
dc.departmentİzmir Institute of Technology. Molecular Biology and Geneticsen_US
dc.departmentİzmir Institute of Technology. Bioengineeringen_US
dc.identifier.startpage86en_US
dc.identifier.endpage89en_US
dc.identifier.wosWOS:000516830900023en_US
dc.identifier.scopus2-s2.0-85075595764en_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.identifier.wosqualityN/A-
dc.identifier.scopusqualityN/A-
item.fulltextWith Fulltext-
item.grantfulltextopen-
item.languageiso639-1en-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.openairetypeConference Object-
crisitem.author.dept04.03. Department of Molecular Biology and Genetics-
crisitem.author.dept04.03. Department of Molecular Biology and Genetics-
Appears in Collections:Bioengineering / Biyomühendislik
Molecular Biology and Genetics / Moleküler Biyoloji ve Genetik
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File SizeFormat 
Cell_Segmentation_of_2D.pdf578.13 kBAdobe PDFView/Open
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

10
checked on Nov 15, 2024

WEB OF SCIENCETM
Citations

7
checked on Nov 9, 2024

Page view(s)

256
checked on Nov 18, 2024

Download(s)

492
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.