Please use this identifier to cite or link to this item:
https://hdl.handle.net/11147/9393
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Ayanzadeh, Aydın | - |
dc.contributor.author | Yağar, Hüseyin Onur | - |
dc.contributor.author | Yalçın Özuysal, Özden | - |
dc.contributor.author | Pesen Okvur, Devrim | - |
dc.contributor.author | Töreyin, Behçet Uğur | - |
dc.contributor.author | Unay, Devrim | - |
dc.contributor.author | Önal, Sevgi | - |
dc.date.accessioned | 2020-07-25T22:10:44Z | - |
dc.date.available | 2020-07-25T22:10:44Z | - |
dc.date.issued | 2019 | - |
dc.identifier.isbn | 978-1-7281-2420-9 | - |
dc.identifier.uri | https://hdl.handle.net/11147/9393 | - |
dc.description | Medical Technologies Congress (TIPTEKNO) -- OCT 03-05, 2019 -- Izmir, TURKEY | en_US |
dc.description.abstract | The quantitative and qualitative ascertainment of cell culture is integral to the robust determination of the cell structure analysis. Microscopy cell analysis and the epithet structures of cells in cell cultures are momentous in the fields of the biological research process. In this paper, we addressed the problem of phase-contrast microscopy under cell segmentation application. In our proposed method, we utilized the state-of-the-art deep learning models trained on our proposed dataset. Due to the low number of annotated images, we propose a multi-resolution network which is based on the U-Net architecture. Moreover, we applied multi-combination augmentation to our dataset which has increased the performance of segmentation accuracy significantly. Experimental results suggest that the proposed model provides superior performance in comparison to traditional state-of-the-art segmentation algorithms. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Institute of Electrical and Electronics Engineers Inc. | en_US |
dc.relation.ispartof | 2019 Medical Technologies Congress (TIPTEKNO) | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | Deep learning | en_US |
dc.subject | Phase-Contrast microscopy | en_US |
dc.subject | Cell segmentation | en_US |
dc.title | Cell segmentation of 2D phase-contrast microscopy images with deep learning method | en_US |
dc.type | Conference Object | en_US |
dc.institutionauthor | Yalçın Özuysal, Özden | - |
dc.institutionauthor | Pesen Okvur, Devrim | - |
dc.institutionauthor | Önal, Sevgi | - |
dc.department | İzmir Institute of Technology. Molecular Biology and Genetics | en_US |
dc.department | İzmir Institute of Technology. Bioengineering | en_US |
dc.identifier.startpage | 86 | en_US |
dc.identifier.endpage | 89 | en_US |
dc.identifier.wos | WOS:000516830900023 | en_US |
dc.identifier.scopus | 2-s2.0-85075595764 | en_US |
dc.relation.publicationcategory | Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı | en_US |
dc.identifier.wosquality | N/A | - |
dc.identifier.scopusquality | N/A | - |
item.fulltext | With Fulltext | - |
item.grantfulltext | open | - |
item.languageiso639-1 | en | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.cerifentitytype | Publications | - |
item.openairetype | Conference Object | - |
crisitem.author.dept | 04.03. Department of Molecular Biology and Genetics | - |
crisitem.author.dept | 04.03. Department of Molecular Biology and Genetics | - |
Appears in Collections: | Bioengineering / Biyomühendislik Molecular Biology and Genetics / Moleküler Biyoloji ve Genetik Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection |
Files in This Item:
File | Size | Format | |
---|---|---|---|
Cell_Segmentation_of_2D.pdf | 578.13 kB | Adobe PDF | View/Open |
CORE Recommender
SCOPUSTM
Citations
10
checked on Nov 15, 2024
WEB OF SCIENCETM
Citations
7
checked on Nov 9, 2024
Page view(s)
256
checked on Nov 18, 2024
Download(s)
492
checked on Nov 18, 2024
Google ScholarTM
Check
Altmetric
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.