Please use this identifier to cite or link to this item: https://hdl.handle.net/11147/9314
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSaçar Demirci, Müşerref Duygutr
dc.contributor.authorAllmer, Jensen
dc.date.accessioned2020-07-25T22:09:24Z-
dc.date.available2020-07-25T22:09:24Z-
dc.date.issued2017-
dc.identifier.issn1613-4516-
dc.identifier.urihttps://doi.org/10.1515/jib-2017-0032-
dc.identifier.urihttps://hdl.handle.net/11147/9314-
dc.description.abstractMicroRNAs (miRNAs) are involved in the post-transcriptional regulation of protein abundance and thus have a great impact on the resulting phenotype. It is, therefore, no wonder that they have been implicated in many diseases ranging from virus infections to cancer. This impact on the phenotype leads to a great interest in establishing the miRNAs of an organism. Experimental methods are complicated which led to the development of computational methods for pre-miRNA detection. Such methods generally employ machine learning to establish models for the discrimination between miRNAs and other sequences. Positive training data for model establishment, for the most part, stems from miRBase, the miRNA registry. The quality of the entries in miRBase has been questioned, though. This unknown quality led to the development of filtering strategies in attempts to produce high quality positive datasets which can lead to a scarcity of positive data. To analyze the quality of filtered data we developed a machine learning model and found it is well able to establish data quality based on intrinsic measures. Additionally, we analyzed which features describing pre-miRNAs could discriminate between low and high quality data. Both models are applicable to data from miRBase and can be used for establishing high quality positive data. This will facilitate the development of better miRNA detection tools which will make the prediction of miRNAs in disease states more accurate. Finally, we applied both models to all miRBase data and provide the list of high quality hairpins.en_US
dc.language.isoenen_US
dc.publisherInformationsmanagement in der Biotechnologie e.V. (IMBio e.V.)en_US
dc.relation.ispartofJournal of Integrative Bioinformaticsen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectMicroRNAsen_US
dc.subjectMachine learningen_US
dc.subjectConfidenceen_US
dc.subjectHigh qualityen_US
dc.subjectPositive dataen_US
dc.titleImproving the quality of positive datasets for the establishment of machine learning models for pre-microRNA detectionen_US
dc.typeArticleen_US
dc.institutionauthorSaçar Demirci, Müşerref Duygu-
dc.institutionauthorAllmer, Jens-
dc.departmentİzmir Institute of Technology. Molecular Biology and Geneticsen_US
dc.identifier.volume14en_US
dc.identifier.issue2en_US
dc.identifier.wosWOS:000406931200011en_US
dc.identifier.scopus2-s2.0-85044694577en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıtr
dc.identifier.doi10.1515/jib-2017-0032-
dc.identifier.pmid28753538en_US
dc.relation.doi10.1515/jib-2017-0032en_US
dc.coverage.doi10.1515/jib-2017-0032en_US
dc.identifier.wosqualityN/A-
dc.identifier.scopusqualityQ2-
item.fulltextWith Fulltext-
item.grantfulltextopen-
item.languageiso639-1en-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.openairetypeArticle-
crisitem.author.dept04.03. Department of Molecular Biology and Genetics-
Appears in Collections:Molecular Biology and Genetics / Moleküler Biyoloji ve Genetik
PubMed İndeksli Yayınlar Koleksiyonu / PubMed Indexed Publications Collection
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File SizeFormat 
Improving-the-Quality.pdf1.65 MBAdobe PDFView/Open
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

3
checked on Nov 15, 2024

WEB OF SCIENCETM
Citations

3
checked on Nov 9, 2024

Page view(s)

202
checked on Nov 18, 2024

Download(s)

78
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.