Please use this identifier to cite or link to this item: https://hdl.handle.net/11147/9075
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKarakuş, Oktay-
dc.contributor.authorKuruoğlu, Ercan E.-
dc.contributor.authorAltınkaya, Mustafa Aziz-
dc.date.accessioned2020-07-25T22:03:28Z-
dc.date.available2020-07-25T22:03:28Z-
dc.date.issued2019-
dc.identifier.issn1057-7149-
dc.identifier.issn1941-0042-
dc.identifier.urihttps://doi.org/10.1109/TIP.2018.2878322-
dc.identifier.urihttps://hdl.handle.net/11147/9075-
dc.descriptionPubMed: 30371367en_US
dc.description.abstractSynthetic aperture radar (SAR) and ultrasound (US) are two important active imaging techniques for remote sensing, both of which are subject to speckle noise caused by coherent summation of back-scattered waves and subsequent nonlinear envelope transformations. Estimating the characteristics of this multiplicative noise is crucial to develop denoising methods and to improve statistical inference from remote sensing images. In this paper, reversible jump Markov chain Monte Carlo (RJMCMC) algorithm has been used with a wider interpretation and a recently proposed RJMCMC-based Bayesian approach, trans-space RJMCMC, has been utilized. The proposed method provides an automatic model class selection mechanism for remote sensing images of SAR and US where the model class space consists of popular envelope distribution families. The proposed method estimates the correct distribution family, as well as the shape and the scale parameters, avoiding performing an exhaustive search. For the experimental analysis, different SAR images of urban, forest and agricultural scenes, and two different US images of a human heart have been used. Simulation results show the efficiency of the proposed method in finding statistical models for speckle.en_US
dc.language.isoenen_US
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en_US
dc.relation.ispartofIEEE Transactions on Image Processingen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectReversible jump MCMCen_US
dc.subjectSpeckle noise modelingen_US
dc.subjectSAR imageryen_US
dc.subjectUltrasound imageryen_US
dc.subjectEnvelope distributionsen_US
dc.titleGeneralized Bayesian model selection for speckle on remote sensing imagesen_US
dc.typeArticleen_US
dc.institutionauthorKarakuş, Oktay-
dc.institutionauthorAltınkaya, Mustafa Aziz-
dc.departmentİzmir Institute of Technology. Electrical and Electronics Engineeringen_US
dc.identifier.volume28en_US
dc.identifier.issue4en_US
dc.identifier.startpage1748en_US
dc.identifier.endpage1758en_US
dc.identifier.wosWOS:000451941600014en_US
dc.identifier.scopus2-s2.0-85055695380en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.doi10.1109/TIP.2018.2878322-
dc.identifier.pmid30371367en_US
dc.relation.doi10.1109/TIP.2018.2878322en_US
dc.coverage.doi10.1109/TIP.2018.2878322en_US
dc.identifier.wosqualityQ1-
dc.identifier.scopusqualityQ1-
item.fulltextWith Fulltext-
item.grantfulltextopen-
item.languageiso639-1en-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.openairetypeArticle-
crisitem.author.dept03.05. Department of Electrical and Electronics Engineering-
Appears in Collections:Electrical - Electronic Engineering / Elektrik - Elektronik Mühendisliği
PubMed İndeksli Yayınlar Koleksiyonu / PubMed Indexed Publications Collection
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File SizeFormat 
Generalized_Bayesian_Model.pdf5.36 MBAdobe PDFView/Open
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

17
checked on Nov 15, 2024

WEB OF SCIENCETM
Citations

17
checked on Nov 9, 2024

Page view(s)

648
checked on Nov 18, 2024

Download(s)

254
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.