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Generalized Bayesian Model Selection for Speckle
on Remote Sensing Images

Oktay Karakuş , Ercan E. Kuruoğlu, Senior Member, IEEE, and Mustafa A. Altınkaya, Member, IEEE

Abstract— Synthetic aperture radar (SAR) and ultra-
sound (US) are two important active imaging techniques for
remote sensing, both of which are subject to speckle noise
caused by coherent summation of back-scattered waves and
subsequent nonlinear envelope transformations. Estimating the
characteristics of this multiplicative noise is crucial to develop
denoising methods and to improve statistical inference from
remote sensing images. In this paper, reversible jump Markov
chain Monte Carlo (RJMCMC) algorithm has been used with
a wider interpretation and a recently proposed RJMCMC-based
Bayesian approach, trans-space RJMCMC, has been utilized. The
proposed method provides an automatic model class selection
mechanism for remote sensing images of SAR and US where
the model class space consists of popular envelope distribution
families. The proposed method estimates the correct distribution
family, as well as the shape and the scale parameters, avoiding
performing an exhaustive search. For the experimental analysis,
different SAR images of urban, forest and agricultural scenes,
and two different US images of a human heart have been used.
Simulation results show the efficiency of the proposed method in
finding statistical models for speckle.

Index Terms— Reversible jump MCMC, speckle noise mod-
eling, SAR imagery, ultrasound imagery, envelope distributions,
generalized (heavy-tailed) Rayleigh distribution.

I. INTRODUCTION

REMOTE sensing imaging is a commonly used imaging
method in real life applications where the object of

interest is observed without interaction or a direct contact.
Remote sensing systems can be divided into two groups,
which are passive and active. Passive systems, e.g. airborne
photography, utilize the natural source of energy, such as sun
light, to gather information from the environment. In contrast,
active remote sensing systems have their own energy source
and gather information by sending waves and receiving the
reflected ones from the surface [1]. The object of interest may
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be as small-scale as a human heart, or sometimes as large-scale
as the earth’s surface. Examples of remote sensing imaging
include radar, sonar, ultrasound imaging.

Synthetic aperture radar (SAR) is one of the active remote
sensing imaging methods and has become popular over the last
decades due to its applicability in environmental/agricultural
monitoring, map making, mine detection, etc. [2]. Addition-
ally, SAR imagery is not affected by weather conditions and
it can penetrate soil, clouds and forest canopy [3]. SAR is
capable of producing high quality images even under severe
conditions compared to other imaging methods such as optical
and infrared while avoiding the limitations of these methods,
e.g. night-time or cloud-covers.

Ultrasound (US) imaging is also an active remote sens-
ing method which has been utilized both for medical and
industrial applications. In standard ultrasound systems, there
are three types of measured data, which are radio fre-
quency (RF) signals, envelope-detected signals/images and
B-mode images [4]. The resulting display ultrasound image
is obtained after several operations: firstly measuring multiple
RF signals and converting all these RF signals into an envelope
image. Then, this envelope image is log-compressed and
post-processed in order to obtain an ultrasound image.

Both SAR and US images are obtained via wave reflection
and thus, have very similar characteristics. A common and
important problem degrading statistical inference from both
SAR and US imagery is the presence of multiplicative speckle
noise. The received back-scattered signals sum up coherently
and then undergo nonlinear transformations. This in turn
causes a granular look in the resulted images, which is referred
to as speckle noise [3], [5].

Speckle noise may lead to loss of crucial details in both
SAR and US images and cause problems in processing of
these images such as in feature detection, segmentation or
classification. The first step in dealing with speckle noise, is to
determine its statistical characteristics precisely. In both SAR
and US imaging, general practice in the early applications
in the literature, has been to utilize Rayleigh distribution as
the amplitude distribution model, due to its analytical sim-
plicity and central limit theorem, assuming both the real and
imaginary parts of the back-scattered wave follow a Gaussian
distribution [6], [7].

Despite its popularity in practice, Rayleigh distribution
has not been successful in modeling some types of SAR
and US images and using other distributions, which exhibit
more impulsive behavior, has been more successful in coping
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with the speckle noise effects. Particularly, high resolution
urban SAR images [3], [8] and tissue sections of the US
images [9]–[11] exhibit impulsive characteristics. Various dis-
tributions have been studied in order to represent the impulsive
and heavy-tailed behavior of SAR images. Examples can be
listed as K-distribution for composite terrains [12], land and
sea clutters [13], log-normal distribution for high-resolution
sea clutter [14], Weibull for weather and sea clutters [15]
and for target detection in background radar clutter [16].
Moreover, in US imaging, examples can be listed as:
K-distribution [17] for tissue modeling, Nakagami [7] for
classification of breast masses and Gamma based distributions
[5] in industrial ceramic US images.

There are other studies which aim to provide a global distri-
bution family for all kind of SAR images or generate a mixture
of distributions to obtain the best matching distribution for
a given image. Sportouche et al. [18] proposed a mimicking
approach which is based on two popular and flexible distrib-
utions, namely Fisher and generalized gamma distributions.
The main purpose is to use one of these distributions to
mimic statistical characteristics of the high-resolution SAR
images. It was shown that these two distributions are good
selections for a mimicking purpose and high potentials were
proposed. Krylov et al. [19] proposed an enhanced dictionary
based statistical modeling study of amplitude distributions of
very high-resolution SAR images. In that study, eight popular
distributions (Nakagami, Weibull, generalized Gamma, etc.)
were utilized in the dictionary and an amplitude SAR image
was modeled with a mixture pdf of K components of these
distributions.

Reversible jump Markov chain Monte Carlo (RJM-
CMC) algorithm is an extended version of the classical
Metropolis-Hastings algorithm and was first introduced by
Peter Green [20] as a model selection method. Unlike the
Metropolis-Hastings algorithm, the model space dimension
has been also defined as a variable, and thus a general
method which provides transitions between different dimen-
sional spaces has been proposed. Although Green’s formula-
tion is very general, to the best of our knowledge the general
usage of the algorithm has been limited to model dimension
selection studies of the same classes of models, particularly
in model estimation, in analyzing mixture processes. However,
the original formulation of RJMCMC exhibits a great potential
in exploring different classes of models rather than just being
trans-dimensional.

In our recent study [21], we have proposed a general-
ized framework, trans-space RJMCMC, in order to explore
different classes of models where moment-based RJMCMC
transitions enable the transfer of the information learned in
the most recent model class to another and that interpretation
donated RJMCMC with the capability of choosing the most
suitable model among different (one-dimensional) impulsive
distribution families. The methodology proposed in [21] is
highly flexible and can be adjusted to various applications
by utilizing different types of moments, such as fractional
lower orders, negative orders. In this study, we propose
utilizing this methodology (trans-space RJMCMC [21]) in
generalized model class selection for remote sensing images

of SAR and US. This study is dealing with modeling of the
amplitudes of the bivariate distributions, i.e. this modeling is
related to 2D phenomena.

We utilize a model class space which includes various
frequently used envelope distribution families in order to
represent the statistical characteristics of the images containing
speckle noise. For the experimental analysis, different SAR
images of urban, forest and agricultural scenes and US images
of a human heart have been used. We would like to underline
that unlike other studies which restrict their attention to a
single family of distributions at a time, our methodology is
able to choose from various distribution classes, the library
of which can be extended or reduced depending on the needs
of the user. Thus, users can develop applications by using the
method in this paper, avoiding performing exhaustive searches
to estimate the most suitable statistical distribution.

On the other hand, please note that the purpose of this
paper is not to propose a universal distribution family for
remote sensing images as in [18], or not to demonstrate
a mixture modeling of the relevant distributions for SAR
images as in [19]. We would like to propose, with this paper,
an RJMCMC based Bayesian automatic statistical modeling
scheme for remote sensing images of SAR and US. Contrary to
the important studies [18], [19], generating a mixture process
or proposing a universal distribution for remote sensing images
are not in the scope of this paper.

The rest of the paper is organized as follows: trans-space
RJMCMC is discussed in Section II. The utilized envelope
distribution families and the trans-space RJMCMC methodol-
ogy are given in Section III. Experimental studies and results
are provided in Section IV and Section V concludes the paper
with a brief summary.

II. TRANS-SPACE RJMCMC

The general practice is to use RJMCMC in model estimation
problems such as autoregressive (AR) [22] and autoregressive
integrated moving average (ARIMA) [23]. Another popular
application of RJMCMC is to analyze the mixtures of distri-
butions such as Gaussian [24] and symmetric α-stable (SαS)
mixtures [25].

In the classical “trans-dimensional” RJMCMC approach,
we first assume that a transition from a Markov chain
x to x ′ with a RJMCMC move, m, with probability of pm

is proposed. This transition will be accomplished with a
relation (or namely a reversible function), h, between the
parameter vectors of states x and x ′, which are θ and θ ′.
Since the dimension matching between the parameter spaces
is satisfied, this transition is accepted with a probability
of:

A(x → x ′) = min

{
1,

π(x ′)pmRχ(u′)
π(x)pmχ(u)

∣∣∣∣∂h(θ , u)

∂(θ , u)

∣∣∣∣
}

, (1)

where π(·) refers to the target distribution of interest, χ(·) are
the distributions for the auxiliary variable vectors u and u′,
respectively which are required to provide dimension matching
for the moves m and its reversible move mR. The term

∣∣∣ ∂h(θ,u)
∂(θ,u)

∣∣∣
is the magnitude of the Jacobian.
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Despite having various application areas, all the studies
mentioned above have utilized RJMCMC in a limited per-
spective, particularly, within the same classes of models and
trans-dimensional cases. However, the original formulation
of Green lends itself to a much wider interpretation than
just exploring spaces of different dimensions. In our previous
studies (e.g. [26]), we have utilized RJMCMC in exploring
linear and nonlinear model spaces of nonlinear time series
models, polynomial AR (PAR), polynomial MA (PMA) and
polynomial ARMA (PARMA). In addition, a Volterra system
identification study has been performed in [27].

The recently proposed “trans-space” RJMCMC in [21] lets
us to explore different generic model classes instead of focus-
ing on the parameter dimension. Defining transitions over a
“common feature” such as moment of different model spaces
in the trans-space approach is a mandatory choice for the
algorithm not to start the search from the scratch in the
jumped model space. The approach in [21] utilizes fractional
lower ordered moments (FLOMs) as common feature and
perform transitions between spaces of different probability
distribution families, namely impulsive distributions. In this
paper, a trans-space RJMCMC approach with first order
negative moment-based transitions which explores spaces of
envelope (or amplitude) distribution families, has been used.
The original acceptance ratio expression in (1) is still valid
and is adapted according to the RJMCMC moves proposed in
this study.

III. TRANS-SPACE RJMCMC FOR SPECKLE

NOISE MODELING

A. Envelope Distribution Families

Envelope distribution [28] families are continuous distribu-
tion families which are supported on the interval, (0,∞). Due
to the nature of active remote sensing systems, the amplitude
distributions occur via coherent addition of the reflected waves,
and hence, the speckle noise of SAR and ultrasound images
has been modeled by using distributions of this type. In this
paper, five different envelope distributions, which are widely
used in modeling speckle noise of SAR and US images
from various environments, have been investigated. These
are Nakagami, K, Weibull, Gamma and generalized Rayleigh
distributions.

1) Nakagami Distribution Family: For remote sensing
applications, Nakagami distribution has been utilized in
classification/characterization [29] and speckle suppression of
US images [30] and speckle modeling of agricultural and
mountain scene SAR images [31]. The univariate Nakagami
distribution pdf can be defined as [32]:

f (x) = 2αα

�(α)γ α
x2α−1 exp

(
−α

γ
x2

)
(2)

where �(·) is the gamma function, α ≥ 0.5 refers to the
shape parameter and γ > 0 represents the scale parame-
ter of the Nakagami distribution family. One-sided Gaussian
distribution and Rayleigh distribution are the special mem-
bers of Nakagami distribution family for shape parameters

of 0.5 and 1, respectively. The pth order moment of the
Nakagami distribution is [33]:

E(xp) = �
(
α + p

2

)
�(α)

(γ

α

)p/2
. (3)

2) K-Distribution Family: For remote sensing applications,
K-distribution has been utilized in modeling composite terrain
SAR images [12], land and sea radar clutters [13], and US
imagery [9].
K-distribution is a distribution family which arises by com-

pounding two gamma distributions. Assume a random variable
x is Gamma distributed with mean m and shape L, the mean m
of which is also a Gamma distributed random variable. Thus,
x is K-distributed. Additionally, K-distribution is also a prod-
uct distribution. Particularly, it is the distribution of a random
variable which is the product of two independent Gamma
random variables. The pdf of a univariate K-distribution can
be defined as [34]:

f (x) = 2

γ�(α + 1)

(
x

2γ

)α+1

Kα

(
x

γ

)
(4)

where Kα refers to the modified Bessel function of order α
and α and γ > 0 represent the shape and the scale parameters,
respectively. The pth order moment of the K-distribution
is [34]:

E(xp) = 2p�
( p

2 + 1
)
�

(
α + 1 + p

2

)
�(α + 1)

γ p. (5)

3) Weibull Distribution Family: For remote sensing appli-
cations, Weibull distribution has been used to model land
(forest, rocky mountains), sea and sea ice radar clutters [15]
and cardiac US images [35]. A univariate Weibull distribution
pdf can be defined as [36]:

f (x) = α

γ

(
x

γ

)α−1

exp

(
−

(
x

γ

)α)
(6)

where α is the shape and γ > 0 is the scale parameter.
Weibull distribution family has special members for α = 1
and α = 2, which are the well-known exponential and
Rayleigh distributions, respectively. The pth order moment of
the Weibull distribution is [36]:

E(xp) = �
(

1 + p

α

)
γ p. (7)

4) Gamma Distribution Family: In remote sensing applica-
tions, Gamma distribution has been used to model sea [37] and
land [8] SAR images, and ultrasound speckle noise [5]. The
univariate gamma distribution pdf can be expressed as [36]:

f (x) = xα−1

γ α�(α)
exp

(
− x

γ

)
(8)

where α refers to the shape parameter and γ > 0 is the
scale parameter. The well-known exponential and chi-squared
distributions are special members of the gamma distribution
family. The pth order moment of the Gamma distribution
is [36]:

E(xp) = � (α + p)

�(α)
γ p. (9)
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Fig. 1. Pdf of envelope distribution families for different values of the shape parameter α. For all the families the scale parameter, γ = 1. (a) Nakagami.
(b) K. (c) Weibull. (d) Gamma. (e) Generalized Rayleigh.

5) Generalized Rayleigh Distribution: Generalized (heavy
tailed) Rayleigh distribution [3] has been proposed in order to
model urban scenes SAR images with a better performance
than the classical envelope distributions Rayleigh, Weibull
and K. The classical Rayleigh distribution represents the
distribution of a random variable which is the magnitude
of a 2 dimensional vector, components of which are zero
mean, equal variance Gaussian random variables. Generalized
Rayleigh distribution represents the distribution of a random
variable which is again a 2-dimensional vector. However
this time, the components of the vector are zero location
equal dispersion SαS random variables. Generalized Rayleigh
distribution has a pdf expression in integral form as [3]:

f (x) = x
∫ ∞

0
s exp

(−γ sα
)

J0(sx)ds (10)

where γ > 0 is the scale parameter, 0 < α ≤ 2 is the shape
parameter and J0(·) refers to the zeroth order Bessel function
of the first kind. Rayleigh distribution is the special member of
generalized Rayleigh distribution with α = 2. The pth order
moment of the generalized Rayleigh distribution, for −1.5 <
p < −0.5, is as follows [3]:

E(xp) = 2p+1�
( p

2 + 1
)
�

(−p
α

)
α�

(−p
2

) γ p/α. (11)

In Figure 1, densities for Nakagami, K, Weibull, Gamma
and generalized Rayleigh distributions are shown, respectively.
For Nakagami densities increasing the shape parameter α
makes the densities peaky and heavy tailed relative to the ones
with smaller α. Weibull distribution also follows very similar
characteristics to Nakagami distribution. For K and Gamma
distributions, decreasing the shape parameter makes them
more peaky and heavy tailed than the ones with larger α. For
generalized Rayleigh distributions, tail probabilities decrease
as order of α values increases, whereas peak values are
very similar for all the α values. Generalized Rayleigh,
K and Gamma distributions are distinguished from Nakagami
and Weibull due to heavier tails. Generally, Nakagami and
Weibull distributions are less heavy tailed envelope distribu-
tions and densities diminish towards zero faster than the other
distributions.

B. Implementation of Trans-Space RJMCMC

The parameter space for RJMCMC contains the shape
and the scale parameters of the distributions and also the
family identifier parameter which represent the families.
Particularly, the parameter space is formed as: θ = {k, α, γ }
where the family identifier k refers to Nakagami, K, Weibull,

generalized Rayleigh and Gamma for values between 1 and 5,
respectively.

The joint posterior density, or namely RJMCMC target
distribution of interest, f (θ |x), can be written from Bayes
Theorem as:

f (θ |x) ∝ f (x|k, α, γ ) f (α|k) f (k) f (γ ) (12)

where f (x|k, α, γ ) is the likelihood and corresponds to
Nakagami, K, Weibull, generalized Rayleigh and Gamma pdfs
for values of k, 1, 2, 3, 4 and 5, respectively.

Priors are selected as the following:

f (γ ) = 1/γ (13)

f (k) = 1/5, ∀k, (14)

f (α|k) = U(B(k)
low, B(k)

up ) ∀k, (15)

where U(·) represent a uniform distribution, B(k)
low is the lower

bound and equals to 0.5, 0.5, 1, 0.5, 1 for values of k from
1 to 5, respectively. Additionally, B(k)

up refers to the upper
bound and equal to 2, 10, 5, 2, 6. Please note that this
selection for the bounds is not unique and both of the bounds
are selected intuitively in order to cover lots of distributions
in the families. Increasing upper bounds does not have any
meaningful effect on the results for this study. Interested users
can use different upper bounds for different data sets. Since
it is not possible to define a common conjugate prior for the
scale parameter of all candidate distributions, we choose a
noninformative (Jeffrey’s) prior distribution for γ in this study.
In addition, all possible distribution families are selected as
equiprobable each of which has a probability of 1/5.

1) Model Moves: In this study, two main RJMCMC moves
are defined to perform transitions between different probability
distribution families, which are life and switch moves. The
life move performs the classical MH algorithm and is used to
update the scale parameter, γ , while the algorithm remains in
the same family and at the same shape parameter (k ′ = k and
α′ = α). Two different switch moves are defined and utilized
for RJMCMC transitions, which are within the same family
and between different families. These two different switch
moves [21] are named as intra-class-switch and inter-class-
switch. Intra-class-switch move is performed within the same
family (k ′ = k) whereas the inter-class-switch move performs
switching to a different family (k ′ 	= k).

For both of the switch moves, model transitions must be
handled carefully. In statistics, moments are very important in
having an idea about a probability distribution such as its mean
and variance. Moment-based parameter estimation methods
(namely Method-of-Moments (MoM)) have been widely used
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for the candidate distribution classes in this study, which can
be listed as for Weibull [38], Nakagami [39], Gamma [40],
K-distribution [34] and generalized Rayleigh [3]. Since the
pth order moments are well defined with some constraints for
all the candidate distribution families, using it as the “common
feature” between distributions is a very convenient option for
our purpose. This feature can be thought of as being a super
parameter defined for every class boiling individual different
parameters of each class into a common one. Please note that
using pth order moments in the proposed method is not a
unique choice. Interested readers can utilize other statistics,
such as log-moments. On the other hand, please also note that
one can create a setup with blind proposals between different
classes avoiding using MoM based approach in this paper.
However, using a common parameter like moments, imple-
ments a highly efficient proposal mechanism for RJMCMC
and provides faster convergence of the algorithm reducing the
possibility of having local traps during the Markov chains.

The logic behind the moment-based transitions, is to hold
the pth order moment fixed for both the most recent and the
candidate distributions during a switch move. For example,
given data x , for an inter-class-switch move from distribution
family k with parameters α and γ to family k ′, the candidate
distribution’s shape parameter α′ is proposed from a proposal
distribution and the scale parameter γ ′ is calculated, providing
the following expression:

Ek(xp) = Ek′(xp). (16)

Thus, the information learned in the most recent distribution
is transferred to the new distribution. For intra-class-switch
move, it is straightforward to show that both sides of the
expression in (16) belong to the same family with different
shape parameters.

Up to this point we have discussed the motivation for
why and how the moment based transitions should be per-
formed. Another important point is the choice of the moment
degree “p.” Examining the moment definitions of the families
in Section III-A, we can clearly see that the generalized
Rayleigh family only has moments for p values between
−1.5 and −0.5. This constraint forces using negative moments
for all the distributions, and common-feature based transitions
are performed over negative order moments. In order to
eliminate some possible degradations that may arise from
using fractional moments, p = −1 is the best choice and
have been used in this study. Existence of the first negative
moment has been tested according to the study in [41] and this
selection ( p = −1) is valid for generalized Rayleigh and K
without any constraint on selection of the shape and the scale
parameters. Weibull and Gamma have a constraint of α > 1
and Nakagami has first order negative moments for α > 0.5.
All these constraints are satisfied with a bounded selection for
shape parameters in (15).

Figure 2 depicts the flow diagram of the proposed
usage of RJMCMC in speckle noise modeling of remote
sensing images. Details of the RJMCMC moves are given in
the sequel.

2) Proposal Distributions for Moves: As stated above, life
move updates only the scale parameter, γ where k and α

Fig. 2. Flow Diagram for the Proposed method.

remain fixed. For this purpose, we decided to use a proposal
distribution for life move as follows:

q(γ ′|γ ) = T N (γ, ξscale) for interval (0,∞) (17)

where T N (γ, ξscale) refers to a Gaussian distribution where
its mean γ is the most recent value of the scale parameter, and
its variance is ξscale. This Gaussian distribution is truncated
to lie within the interval of (0,∞) afterwards by rejecting
samples outside this interval. This truncation procedure aims
to satisfy the condition γ > 0.

For both of the switch moves, the sampling of α is per-
formed firstly. The range of α is discretized by increments
of 0.05 in order to avoid numerical errors during the simula-
tions. A discretized Laplace (DL(·)) and a uniform distribution
are selected as proposal distributions for intra and inter-class
switch moves, respectively. The reason for a DL(·) selection
for intra-class-switch is to make the samples come from a
distribution that is symmetrical around the most recent value
and heavier tailed than a Gaussian. On the other hand, during
a transition between different families, we have limited prior
information for the shape parameter, α. Hence, all α values
belonging to the new family are assumed as equiprobable and a
uniform proposal distribution is selected for inter-class-switch
move.

Scale parameter γ transitions is performed via the moment
based method which is mentioned above via functions g(·)
and w(·) for intra and inter-class-switch moves, respectively.
These functions are obtained provided that the equality in (16)
holds. An example derivation for a transition from Weibull
distribution (k = 3, γ , α) to Gamma (k = 5, γ ′, α′) is given
below

E3(x−1) = E5(x−1) (18)

�

(
1 − 1

α

)
γ −1 = �(α′ − 1)

�(α′)
(γ ′)−1 (19)

γ ′ = w(α, α′, γ ) = γ
�(α′ − 1)

�(α′)�
(
1 − 1

α

) . (20)
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It is straightforward to derive all other expressions for g(·)
and w(·) functions.

Consequently, proposals for intra-class-switch move and for
inter-class-switch move are:

α′ ∼ DL(α, 0.5), (21)

γ ′ = g(α, α′, γ ), (22)

and

α′ ∼ U(B(k′)
low , B(k′)

up ), (23)

γ ′ = w(α, α′, γ ), (24)

respectively.
3) Acceptance Ratio for the Moves: The acceptance ratio

expressions obtained for life, intra-class-switch and inter-class-
switch moves are as follows:

Alife = min

{
1,

f (x|k ′, α′, γ ′)
f (x|k, α, γ )

f (γ ′)
f (γ )

q(γ |γ ′)
q(γ ′|γ )

}
(25)

Aintra-cl-sw = min

{
1,

f (x|k ′, α′, γ ′)
f (x|k, α, γ )

f (γ ′)
f (γ )

|J |
}

, (26)

Ainter-cl-sw = min

{
1,

f (x|k ′, α′, γ ′)
f (x|k, α, γ )

f (γ ′)
f (γ )

f (α|k)

f (α′|k ′)
|J |

}
(27)

where |J | is the magnitude of the Jacobian.

IV. EXPERIMENTAL STUDY

Experimental studies in this paper consist of two different
simulations which are synthetically generated and real data
simulations. Results are demonstrated in figures and tables
for both simulation scenarios. RJMCMC has been run for
3000 and 10000 iterations for synthetical and real data simu-
lations, respectively. During the parameter estimation stage,
only the last half of the iterations (1500 and 5000) have
been used and the first half of the iterations are discarded
as burn-in period. The initial distribution of the algorithm is
a Rayleigh distribution (k(0) = 3 and α(0) = 2). All three
RJMCMC moves are assumed to be equiprobable providing
Plife + Pintra-cl-sw + Pinter-cl-sw = 1. Performance of the fitted
distributions to the given data sets has been measured by using
two popular statistical significance tests, namely Kullback-
Leibler (KL) divergence and Kolmogorov-Smirnov (KS) sta-
tistics. KL divergence has been used to test the performance
by considering the estimated and empirical pdfs, whereas KS
statistics and its corresponding p-values have been calculated
by using the estimated and the empirical CDFs.

A. Synthetically Generated Data Simulations

In synthetically generated data simulations, five different
distributions from each candidate family has been selected.
For each selected distribution, 20 different data sets with
1000 samples have been generated and the proposed method
have been run to estimate distributions given the data. Selected
distributions and their estimation results are given in Table I.
Please note that the estimated parameters (α̂ and γ̂ ) and
statistical measures are averages over 20 repetitions.

Examining the results in Table I, all families have
been estimated without error via the proposed method.

TABLE I

MODELLING RESULTS AND STATISTICAL SIGNIFICANCE OF THE
ESTIMATES FOR SYNTHETICALLY GENERATED DATA SETS

Estimated distribution parameters are also very close to the
correct values. These successful estimation results are statisti-
cally supported with the KL and KS measures. Examining the
measures presented in the table, it can be easily seen that all
the distribution estimates are statistically significant for given
data sets with p-values of 1.0000.

Parallel MCMCs vs. Trans-Space RJMCMC: In this section,
the proposed method has been compared to the exhaustive
search of using separate MCMCs for each family in order to
evaluate its computational gain in terms of simulation time.
The reference method utilizes the proposed method without
inter-class-switch moves. For each given data, the reference
method performs estimation for each candidate family. Then,
the statistical significance measures are calculated for each
estimation and the one with minimum measures are selected
as the best fitting distribution. All the time cost simulations
have been run on a computer with Intel dual core i5-2410M
2.30 GHz processor and 4GB of RAM.

For the simulations, distributions utilized in the previous
part (Table I first column) are utilized again. Please note that,
for time cost simulations, only one data set has been generated
from each family. Simulations run 3000 iterations. The first
half of the simulations are discarded as burn-in period in para-
meter estimation step. For the reference method, move proba-
bilities are selected as equiprobable (Plife = Pintra-cl-sw = 0.5,
where Pinter-cl-sw = 0).

Time cost simulation results are presented in Table II.
Other than the case of generalized Rayleigh data, the pro-
posed method offers significant time gain compared to sepa-
rate MCMCs. Actually, the time cost of the MCMCs for the
considered distributions are comparable with the exception
of the generalized Rayleigh distribution which is signifi-
cantly more expensive due to the requirement of performing
numerical integration for its pdf (given in (10)). This in
turn makes the total cost of the reference method, on the
order of the cost for the MCMC with generalized Rayleigh
data. However, the proposed method avoids most of those
time costly visits since it jumps to the states other than the
asymptotic distribution of the Markov chain only occasionally
after the burn in period [21]. The exception is the case when
the data is generalized Rayleigh as shown in the fourth row of
Table II. Essentially, the time cost of the proposed method is
comparable to a single MCMC and one can expect increased
superiority of the proposed method for a set-up including lots
(more than five) of candidate models.

Examining the model estimation results and statistical sig-
nificance measures in Table II, it can be easily seen that,
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TABLE II

PARALLEL MCMC VS. RJMCMC. COMPARISON FOR SIMULATION TIME AND ACCURACY

Fig. 3. SAR and US images. For US images, sections inside solid lines refer to blood sections, whereas sections inside dashed lines refer to tissue sections.
(a) SAR-Urban-X. (b) SAR-Urban-L. (c) SAR-Forest-X. (d) SAR-Forest-UHF. (e) SAR-Agricultural-X. (f) SAR-Mixed-X. (g) SAR-Agricultural-L.
(h) US-Cross. (i) US-Long.

the reference method and the proposed method perform nearly
the same and estimate the same distributions for each of the
given data sets. Combining these estimation results with the
total simulation times, the proposed method’s success can be
easily pointed out.

B. Real Data Simulations

In this study seven different SAR images from urban, forest,
agricultural and mixed scenes have been utilized in order to
show the statistical differences according to the environment.
For each scene, two (one for mixed scene) images have been
used which are measured in different frequency bands, X,
L and UHF. All the figures are in intensity format and their
sizes are 715 × 800 except Agricultural-L the size of which
is 150 × 300. Particularly, X-band SAR images have been
generally used in airborne systems and for terrain mapping.
Its frequency range is 8-12 GHz with a wavelength range
of 2.5-3.75 cm. L-band SAR images have been utilized
in American and Japanese satellites and NASA airborne.
Its frequency range is lower than X-band (1-2GHz with a
wavelength range of 15-30 cm). UHF band, also known as
P-band, has been used especially for extraterrestrial targets
and has the lowest frequency band compared to X an L bands
which is 300 MHz-1 GHz [42]. All the SAR images in this
study are downloaded from [43] and are shown in Figure 3.
For the simulation issues, in order to reduce the computational

load and removing the effects of the homogenous areas on the
images, all the SAR images are down-sampled with a factor
of 5. Originally, the image in Figure 3 (d) is colored, however
it is transformed into a gray-scale image before simulations
by averaging its red, green and blue components.

US images used in this study, are plane-wave imaging
challenge in medical ultrasound (PICMUS) data sets [44]
containing two measurements from a volunteer, which is
recorded on the carotid artery. A 75 plane-wave sequence was
recorded with a Verasonics Vantage 256 research scanner and
an L11 probe (Verasonics Inc., Redmond, WA). The difference
between the two images are their sections of interest, one of
them is cross-sectional, the other one is longitudinal (For the
details of the data and the PICMUS challenge please see [44]).
For both of the images, two rectangular speckle patches are
extracted from the envelope image, belonging to tissue and
blood pool sections. Each extracted section comprises around
2000 samples. Please note that all the analysis for these sec-
tions has been performed on raw data (before down-sampling
and log-compression). In Figure 3(h)-(i), the two aforemen-
tioned US images of cross and longitudinal sections are shown,
respectively. Rectangles with solid and dashed lines refer to
the extracted blood and tissue sections, respectively.

For all the SAR and US data sets, simulations have been
repeated 20 times and averages over these repetitions have
been presented in the tables. In real data simulations, in order
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Fig. 4. SAR image distribution modeling results. Sub-figures on the left
column refer to the estimated pdfs in linear scale, whereas the ones on the
right column are in logarithmic scale. (a)-(b) Urban-X. (c)-(d) Urban-L.
(e)-(f) Forest-X. (g)-(h) Forest-UHF. (i)-(j) Agricultural-X.
(k)-(l) Agricultural-L. (m)-(n) Mixed-X.

to show the effectiveness of the proposed method, we have
also performed a maximum likelihood (ML) based parameter
estimation method for all the families. The ML estimated

Fig. 5. US image distribution modeling results. (a)-(d): Estimated pdfs in
linear scale, (e)-(h): Estimated pdfs in logarithmic scale. (a), (e) Cross (B).
(b), (f) Cross (T). (c), (g) Long (B). (d), (h) Long (T).

distribution for a given data set is the one that has the minimum
KL and KS measures compared to the others. These results
are shown in several sub-figures in Figures 4 and 5.

1) SAR Image Modeling: In Table III, the estimated distri-
bution families and the resulting scale and shape parameters
are shown for all seven SAR images. In addition, Table III
presents the KL and KS significance test results for each SAR
image. For urban images, both of the images follow gener-
alized Rayleigh distribution with p-values of at least 0.9994.
These results provide further empirical evidence to the results
of [3] and [2] which suggest generalized Rayleigh distribution
to model urban scene SAR images.

Examining the forest scene SAR image results in Table III,
we can state that forest images for both of the frequency
bands have lighter tails than urban scenes, and the resulting
distributions are K and Gamma. Please note that K and
Gamma distribution families generally contain similar mem-
ber distributions since K distribution is a compound/product
distribution of Gamma. Both of the agricultural SAR images
have similar histograms, whereas UHF-band forest scene SAR
image has slightly fatter tails than that of X-band. For this type
of histograms, due to having fatter tails than a K distribution,
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TABLE III

MODELLING RESULTS AND STATISTICAL SIGNIFICANCE
OF THE ESTIMATES FOR SAR IMAGES

estimating Gamma distribution for UHF-band forest SAR
image fulfills our prior expectations.

Analyzing the agricultural scene SAR image results
in Table III, first, we can state that two images have charac-
teristically different histograms and estimating different dis-
tributions for each has not been surprising. Thus, for the
X-band agricultural SAR image, the resulting distribution is a
Weibull the shape parameter of which is higher than 3. This
result shows that this image has nearly centralized intensity
histogram. For a histogram of this type, estimating Weibull
distribution provides evidence to a study in [15]. On the other
hand, L-band agricultural scene SAR image seems to have
a Rayleigh-type non-symmetrical distribution and the most
suitable fitted distribution is a Gamma. For both forest and
agricultural images, statistical significance results demonstrate
remarkable fitting performance of the proposed method, all of
which achieve a p-value of 1.

Mixed scene image histogram is very similar to
Forrest-UHF and Agricultural-L histograms with heavier tails.
Since those images are modeled with the Gamma distribution,
the estimated distribution family for the mixed scene image is
also Gamma. Statistical significance values are very low and
the estimation performance is also reasonable.

In Figure 4 estimated pdfs in both linear and logarithmic
scales are shown for all seven SAR images. Logarithmic
scales for each pdfs have been used to show the behavior
of data for low probability regions. All sub-figures provide
visual verification to the numerical results discussed above for
Table III. Examining the figures, heavy-tailed characteristics of
urban images are clear in the histograms. In addition, estimated
generalized Rayleigh distributions generally follow the data
histogram well. For both of the forest images, estimation
performance is remarkable and estimated pdfs fit the data
histogram for both low and high probability data ranges.
Due to its nearly-centralized histogram, estimated distribu-
tion has slightly lower performance for the data histogram
intensity values over 160. However, for the lower intensities
of Agricultural-X images and all intensities of Agricultural-L
image, it is clearly seen that the estimated distributions fit the
data histograms successfully.

Additionally, examining the Mixed-X estimation results
in Figure 4(m)-(n), it can be seen that the estimated dis-
tribution models the intensities around the peak of the his-
togram better rather than its tails. During the simulations,
in a couple of 20 repetitions for mixed scene image, we have
experienced that the proposed method estimates generalized

TABLE IV

MODELLING RESULTS AND STATISTICAL SIGNIFICANCE OF THE
ESTIMATES FOR US IMAGES. (B) AND (T) REFER TO

BLOOD AND TISSUE SECTIONS, RESPECTIVELY

Rayleigh distribution instead of Gamma. These trials model
the tails of this image better rather than the intensities
around the peaks resulting in higher KL and KS values than
that of 0.0234 and 0.0306, respectively. However, generally,
in most of the repetitions, Gamma distribution has been
estimated as the best matching distribution family.

2) Ultrasound Image Modeling: For US speckle modeling,
we have studied four cases which are two US images and
blood and tissue sections for each image. In Table IV, we show
the estimation results for all four cases and their KL and KS
test results, respectively. Examining the blood sections for
both of the images, estimated pdfs are both K distribution.
Both of the blood sections demonstrate Rayleigh-like (but sub-
Rayleigh) distribution characteristics and the proposed method
estimates the most suitable distribution for blood sections.
In addition, analyzing the tissue sections for both images,
estimated pdfs are generalized Rayleigh for both of the images.
Estimated distributions for all four cases have fulfilled the
expectations and provide empirical evidence in support of the
results of [5] and [9]-[11] that tissue sections have heavier
tails than blood sections. In addition, generalized Rayleigh has
shown better performance compared to Gamma and K distrib-
utions which are generally preferred distributions in the litera-
ture in modeling the heavy tailed characteristics of US images
resulting from the speckle noise. For all the cases, statistical
significance test results demonstrate the remarkable fitting
performance of the proposed method by achieving p-values of
at least 0.9771. Results obtained from tissue section modeling
provide further evidence to previous studies [10], [11] which
propose generalized Rayleigh distribution for modeling of
tissue sections.

The visual results for US speckle modeling in terms of linear
and log-scale pdfs are shown in Figure 5. Examining all the
sub-figures, we can say that all the fitted distributions follow
the data histograms well both for higher and lower probability
ranges. Figure 5 provides visual support to the numerical
results in Table IV. Particularly, Rayleigh-type characteristics
of blood sections for both cross and longitudinal sections,
has been clearly seen from the Figure 5-(a) and (c). The
estimated distribution for these sections are K distribution
and its performance is remarkable for both of the images
and for all data range. Examining the tissue section results
in Figure 5-(b), (d), (f) and (h), we can clearly see the heavy
tailed characteristics of these sections. The lower probabilities
are around 10−3 even for the maximum values. Estimated
generalized Rayleigh distributions achieve great fitting perfor-
mance for all data ranges of the tissue sections.
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V. CONCLUSION

In this study, we have proposed a generalized Bayesian
model selection approach for remote sensing images based
on trans-space RJMCMC in [21]. The proposed method in
this paper, is an automatic statistical model class selection
method among remote sensing images. Our method is clearly
distinguished from other methods in the literature that focus
on a single family at a time, since it is able to choose from
various distribution classes. Moreover, the model class space
can be easily adjusted according to the needs of the users,
and thus the proposed method provides a very flexible use in
various applications.

Particularly, the proposed method estimated generalized
Rayleigh distribution for urban SAR and tissue section US
images. These results are in good agreement with the studies
in the literature and confirm the estimation performance of
the proposed method. In addition, applicability of Gamma
and K distributions for remote sensing images, land scenes
of forest and agricultural SAR and blood pool sections of
US images has been clearly demonstrated. In land scene
SAR images with nearly-centralized histograms, Weibull dis-
tribution has been found as the suitable distribution model,
and empirical evidence was provided to the studies in the
literature.

During the simulations, we have experienced some similar-
ities and differences between distribution families for different
data sets. Particularly, for heavy tailed data sets such as
Urban SAR and tissue US generalized Rayleigh is selected
by RJMCMC and generally, intra-class-switch moves are
accepted. This shows the success of the generalized Rayleigh
distribution in modeling heavy tailed data sets. Additionally,
for data sets which have lighter tails than mentioned images
above (Forest SAR and Blood US), the proposed method
has generally chosen Gamma or K distributions. Since K
distribution is a compound and product distribution of the
Gamma distribution, this result is expected and the algorithm
frequently accepts inter-class-switch moves between K and
Gamma distribution. During examining Rayleigh-like distrib-
utions, the proposed method is more likely to accept inter-
class-switch move between all the families, since Rayleigh
is a common distribution for the most of the families.
Because of this fact, selecting Rayleigh as the initial distri-
bution, gives flexibility to the algorithm and speeds up the
convergence. For the data sets which are less-skewed than
a Rayleigh distribution (e.g. Agricultural-X), the proposed
method often performs inter-class-switch moves between
Weibull and Nakagami distributions rather than Gamma and
K distributions.

Another success of the proposed approach for proposal
distributions appears when there are lots of distributions whose
statistical characteristics are very similar. The proposed usage
can easily adjust itself for a transition between distributions the
shape and scale parameters of which have extremely different
values. In other words, matching the norms to calculate the
parameters, offers to switch distributions the parameters of
which are strictly different. This capability of the proposed
method increases the number of model switches between sim-
ilar distributions in presence of mimic phenomena. We have

experienced this, especially between Gamma and K distri-
butions. These two families are able to cover most of the
members of each other. However, since the switched candidate
distributions in each family have nearly the same statistical
characteristics, this does not change the aim of this paper
which is modeling the given data with the best (the most
suitable) distribution. For further studies, this approach has
possibility to open research directions to perform simulation
studies about the mimicking capabilities of a distribution to
another.

The presented approach can be used in a completely auto-
mated method for noise removal applications in remote sensing
imaging methods. It can also be described as a method that can
determine statistical models for remote sensing images other
than the SAR and US. We would like to underline that the
trans-space RJMCMC approach is not limited only to sampling
across different distribution families but also can be extended
to any class of models.
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