Please use this identifier to cite or link to this item: https://hdl.handle.net/11147/9063
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKadiroğlu, Pınar-
dc.contributor.authorKorel, Figen-
dc.contributor.authorPardo, Matteo-
dc.date.accessioned2020-07-25T22:03:23Z
dc.date.available2020-07-25T22:03:23Z
dc.date.issued2019-05
dc.identifier.issn0035-6808
dc.identifier.issn0035-6808-
dc.identifier.urihttps://hdl.handle.net/11147/9063
dc.description.abstractThe main objective of this study was to determine different hazelnut oil concentrations in extra virgin olive oil (EV00) belonging to different geographical regions inside Turkey using the combination of a SAW sensor based electronic nose (e-nose) and a machine vision system (MVS). We leveraged the oil characterisation given by the two easy-to-use and complementary experimental techniques through the adoption of conventional PCA for data exploration and random forests (RF) for supervised learning. The e-nose/MVS combination allows significantly better results both in adulteration detection independently of EVOO's geographical provenance and in EVO0 geographical provenance determination, independently of the adulteration level, with respect to the single characterisation method. RF analysis also produces feature ranking, permitting to shed light on which oils' characteristics influence the learning result. We found that EV00 geographical provenance discrimination is mainly due to yellowness and guaiacol content, while (E)-2-hexenal chiefly determines the prediction of the hazelnut level.en_US
dc.language.isoenen_US
dc.publisherStazione Sperimentale per le Industrieen_US
dc.relation.ispartofRivista Italiana delle Sostanze Grasseen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectExtra virgin olive oilen_US
dc.subjectElectronic noseen_US
dc.subjectMachine vision systemen_US
dc.subjectRandom forestsen_US
dc.subjectFeature selectionen_US
dc.titleChemometric analysis of chemo-optical data for the assessment of olive oil blended with hazelnut oilen_US
dc.typeArticleen_US
dc.institutionauthorKadiroğlu, Pınar-
dc.institutionauthorKorel, Figen-
dc.institutionauthorKadiroğlu, Pınar
dc.institutionauthorKorel, Figen
dc.departmentİzmir Institute of Technology. Food Engineeringen_US
dc.identifier.volume96en_US
dc.identifier.issue2en_US
dc.identifier.startpage123en_US
dc.identifier.endpage130en_US
dc.identifier.wosWOS:000473835400006en_US
dc.identifier.scopus2-s2.0-85069765765en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.wosqualityQ4-
dc.identifier.scopusqualityQ4-
item.fulltextWith Fulltext-
item.grantfulltextopen-
item.languageiso639-1en-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.openairetypeArticle-
crisitem.author.dept03.08. Department of Food Engineering-
Appears in Collections:Food Engineering / Gıda Mühendisliği
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File Description SizeFormat 
Chemometric_analysis.pdfMakale (Article)748.52 kBAdobe PDFThumbnail
View/Open
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

3
checked on Nov 15, 2024

WEB OF SCIENCETM
Citations

4
checked on Oct 26, 2024

Page view(s)

386
checked on Nov 18, 2024

Download(s)

124
checked on Nov 18, 2024

Google ScholarTM

Check





Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.