
The main objective of this study was to determine different hazelnut oil concentrations 
in extra virgin olive oil (EVOO) belonging to different geographical regions inside Turkey 
using the combination of a SAW sensor based electronic nose (e-nose) and a machine 
vision system (MVS). We leveraged the oil characterisation given by the two easy-to-use 
and complementary experimental techniques through the adoption of conventional PCA 
for data exploration and random forests (RF) for supervised learning. The e-nose/MVS 
combination allows significantly better results both in adulteration detection independently 
of EVOO’s geographical provenance and in EVOO geographical provenance determination, 
independently of the adulteration level, with respect to the single characterisation method. 
RF analysis also produces feature ranking, permitting to shed light on which oils’ char-
acteristics influence the learning result. We found that EVOO geographical provenance 
discrimination is mainly due to yellowness and guaiacol content, while (E)-2-hexenal chiefly 
determines the prediction of the hazelnut level. 

Key words: Extra virgin olive oil, electronic nose, machine vision system, random forests, 
feature selection.

INTRODUCTION
Hybrid chemical sensing has been often used to improve electronic nose 
(e-nose) selectivity [1, 2]. The claimed advantage of such systems is the low(er) 
correlation between the responses of the different sensors types, which in turn 
is assured by the different sensors transduction principles. Even more diversi-
fication has been reached with joint e-nose and electronic tongue (e-tongue) 
experiments that measure samples in different phases [3-5]. Another experi-
mental technique, which is complementary to the e-nose, is gas chromatog-
raphy-mass spectrometry (GC-MS). GC-MS is the reference analytical tech-
nique for the characterisation of food headspace, yet its cost doesn’t normally 
allow more than a double check of the e-nose results on a restricted sample 
subset. Only recently researchers have considered sample properties differ-
ent from their chemical emission. In particular, adding spectral properties, as 
measured with a camera, colorimeter or electronic eye (e-eye), allows a more 
complete sample characterisation, due to the removal of feature correlation. 
Colour is the one of the most important quality criterions of virgin olive oil and 
highly affects consumer preferences. It is influenced by different factors such 
as environmental conditions, fruit variety, and degree of fruit ripeness, growing 
region, processing and storage techniques. The chlorophyll and carotenoid 
profiles of olive oils have been shown to correlate with several colour descrip-
tors [6]. An e-nose, e-tongue and e-eye combination was used to discriminate 
red wines aged with different methods [7] and to discriminate Spanish olive 
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Figure 1 - The typical znoseTM chromatogram of EVOO (a) and hazelnut oil (b).
 

 

 

  

varieties and predict their bitterness degree [8].
The authentication of virgin olive oil and adulteration 
is an important issue for the oil industry. Economic 
losses, health and safety problems arise from frauds 
with cheaper vegetable oils or low-quality olive oils 
[9]. Several studies focused on the detection of olive 
oil adulteration with traditional analytical techniques 
[10-14], and rapid methods, such as high-power 
pulsed-field gradient NMR [15], the combination of 
SPME/GC-FID, SPME/GC-MS and e-nose [16], and 
mid-infrared (IR) spectroscopy [17].
For the analysis of combined chemo-optical 
data, several standard chemometrics or pattern 
recognition algorithms can be considered. An 
important feature of any analysis method is the ability 
to perform feature selection that allows appreciating 
the features’ relative contribution to the performance 
enhancement due to datasets fusion. We opted for 
Random Forests (RF), an ‘ensemble learning method 

generating many classifiers and aggregating their 
results, which showed top learning performances 
in several comparative studies and easily produces 
a feature score [18]. Other well-known aggregation 
methods are boosting [19] and bagging [20]. In 
bagging, each classifier is independently constructed 
using a bootstrap sample of the data set. In the end, 
a simple majority vote is taken for prediction. Starting 
from bagging, Breiman [18] proposed RF, which are 
ensembles of trees (classification or regression trees). 
In addition to constructing each tree using a different 
bootstrap sample of the data, RF change the way of 
the constructed trees. In standard trees, each node 
is split using the best split among all variables. In a 
RF, each node is split using the best split among a 
subset of predictors (i.e. features) randomly chosen 
at that node. This somewhat contrary strategy turns 
out to perform very well compared to many other 
classifiers, including discriminant analysis, support 
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Figure 2 - PCA plots with different point labeling for the joined znoseTM

and color data

c) 

a) 

b) 

 

Figure 3 - PCA plots with different point labeling for the znoseTM data, no 
pure hazelnut oil present. 

a)

b)

c)

vector machines and neural networks. 
It is rather robust against overfitting 
[18]. In addition, RF has only two hyper 
parameters which are the number of 
variables in the random subset at each 
node and the number of trees in the 
forest. They are usually not very sensitive 
to their values. Another advantage of RF 
is that it automatically outputs variable 
ranking. The RF algorithm estimates the 
importance of a variable by calculating 
how much the prediction error increases 
when data not in the bootstrap sample 
(‘out-of-bag’ data) for that variable is 
permuted (which amounts to making 
that variable useless), while all others 
are left unchanged. The rationale is that, 
if prediction deteriorates when a certain 
variable is made useless, that variable is 
important for prediction. The necessary 
calculations are carried out tree by tree 
as the RF is constructed.
In analytical chemistry there are a few 
papers on the advantage of classification 
performances and variable selection 
capabilities of RF. To our best knowledge, 
Hancock et al. were the first ones 
to make a performance comparison 
of RFs and other modern statistical 
techniques for molecular descriptor 
selection and retention prediction in 
chromatographic quantitative structure-
retention relationship (QSRR) studies [21]. 
Granitto et al. have a nice paper on the 
application of Random Forest-Recursive 
Feature Elimination (RF-RFE) algorithm 
to the identification of relevant features 
in the spectra produced by Proton 
Transfer Reaction-Mass Spectrometry 
(PTR-MS) analysis of agroindustrial 
products [22]. In previous papers of ours 
[23, 24] we found that RF and Support 
Vector Machines (SVM) have a similar 
classification performance [25, 26], while 
Nearest Shrunken Centroids (NSC) have 
worse performances [27]. It was also 
shown that RF and NSC, which both 
have a useful intrinsic feature selection 
mechanism, produce different feature 
rankings. In particular, NSC, scoring 
features independently, may lose some of 
the features found by RF.
The main objective of this study was to 
determine the ability of the combination of 
e-nose and machine vision system (MVS) 
to detect the adulteration level of hazelnut 
oil in EVOO, independently of their 
geographical provenance. We compare 
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this to the ability of the e-nose and MVS 
taken singularly. We also address the oil 
provenance discrimination problem. We 
make use of the visual data interpretation 
capabilities of PCA as much as possible; 
when PCA arrives to its limit we adopt 
state-of-the-art supervised analysis with 
RF.

EXPERIMENTAL PART
SAMPLE PREPARATION

Two North Aegean region (Zeytindag 
and Kucukkuyu) and two South Aegean 
regions (Milas and Selcuk) EVOOs, which 
were produced from olives harvested 
from one cultivar in a specific region, 
and hazelnut oil were purchased in İzmir 
(Turkey). Prior to the analyses, all samples 
were stored in the dark at 8°C. None of 
them were subjected to any treatment that 
might alter their composition. The study 
was carried out on 9 groups of samples: 
pure EVOO, pure hazelnut oil and seven 
groups of samples of EVOO blended with 
hazelnut oil (Haz) at different adulteration 
levels: 5, 10, 15, 20, 30, 40, and 50% 
(v/v). The experiment was performed in 
triplicate.

E-NOSE ANALYSIS

E-nose measurements were performed 
with the zNoseTM 7100 vapor analysis 
system (Electronic Sensor Technology, 
Newbury Park, CA, USA) and the area 
of 8 chromatographic peaks were 
extracted, following the procedures 
stated in Kadiroğlu et al. [28]. Six e-nose 
readings were taken for each oil sample.

MACHINE VISION SYSTEM ANALYSIS

Oil samples (25 ml) were then transferred 
into glass Petri dishes (60 × 15 mm) and 
placed in MVS illuminated with two D65 
fluorescent lamps (ECS Inc., Gainesville, 
FL, USA). An image was taken with a CCD 
digital camera (Sony DFK 21BF04, The 
Imaging Source Europe GmbH, Bremen, 
Germany). Due to the stability of the 
colour measurement, only one reading 
was taken. Five summary colour features 
were extracted with the ColorExpert 
software (ECS Inc., Gainesville, FL, USA): 
lightness (L), redness-greenness (a), 
yellowness-blueness (b), chroma and 

 

Figure 4 - PCA plots with different point labeling for the color data, no 
pure hazelnut oil present.
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Figure 5 - PCA plots with different point labeling for the joined znoseTM

and color data, no pure hazelnut oil present.
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Figure 6 - Box plots summarizing test results over 10 runs of RF

 

 

Figure 7 - Variable importance outputted by rf for the oil provenance 
discrimination problem. 

 

Figure 8 - Variable importance outputted by rf for the adulteration 
quantification problem.

hue. L values range from 0 (black) to 
100 (perfect reflecting diffuser). Hue and 
chroma are derived from a and b: the hue 
angle, describes the sense of colour (h 
= tan-1(b/a)), and the saturation index or 
chroma (C = (a2 + b2)0.5) is associated with 
brightness or vividness of a colour.

DATA ANALYSIS

The first data pre-processing step 
was to aggregate the six readings for 
every replicate of the sample measured 
with the e-nose (the mean value was 
taken). In order to visually understand 
how the output variables (geographical 
provenance and adulteration levels) affect 
sensors’ response, Principal Component 
Analysis (PCA), the use of different 
labelling on the single and on the joint 
datasets was applied systematically. 
For the supervised analysis and feature 
selection with random forests, we 
adopted the randomForest package 
[29], an R interface to the original Fortran 
programs by Breiman and Cutler [30]. 

RESULTS AND DISCUSSION 
Typical chromatograms for EVOO (A) and 
hazelnut oil (B), displayed in Figure 1, show 
that the differences between pure olive oil 
and pure hazelnut oil are significant.
In Figure 2 we show PCA plots -performed 
on the colour dataset- corresponding to 
three different data labelling. In the upper 
two plots data points are labelled according 
to quantities to be discriminated, i.e. 
geographical provenance in (a) and Haz 
content in (b). In (c) a quality check was 
performed: data are plotted according 
to replicate number. Replicates cluster 
together for any fixed ‘provenance’ – ‘Haz 
content’ pair, confirming measurements’ 
reproducibility. In Figure 2b it is seen 
that 100% adulteration (samples ‘Haz’) is 
straightforward to discriminate (we show 
only the colour dataset, the same holds for 
the e-nose dataset). We therefore restrict 
further analysis to datasets without ‘Haz’ 
samples (‘noHaz’).
PCA plots of e-nose data alone, colour 
data alone and e-nose in combination 
with colour data are presented in 
Figure 3, Figure 4, Figure 5 respectively. 
Figure 3 is a fine example of different 
effects determining different principal 
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components (PC). Figure 3a shows that differences 
in oil provenance determine the 2nd PC, where Selcuk 
and Zeytindag are partially superposed. In Figure 
3b Haz concentrations clearly increase from left to 
right. Still, no satisfactory discrimination is possible; 
in particular, looking in detail, it can be noticed that 
Haz20 samples on the left-hand side, which are 
mixed with EVOO, Haz5 and Haz10, all have Selcuk 
origin.
The PCAs on colour data in Figure 4 tell a 
partially different story. Here provenance and Haz 
concentration influence both PCs. Moreover: 1) 
Kucukkuyu and Zeytindag are superposed and 
2) three Selcuk points with high adulteration level 
(Haz50) are displaced at the centre of the PCA 
plot. Most importantly, from Figure 4b we learn that 
adulteration level is only clear inside a geographical 
homogeneous group. 
Finally, Figure 5 does not show significant increase 
in discrimination of geographical provenance or 
adulteration levels. Based on the unsecular results 
Kucukkuyu and Zeytindag are superposed while 
Milas and Selcuk samples were discriminated clearly. 
Similarly, adulteration level discrimination could 
be observed within the geographical provenance. 

However, overall view demonstrates that Haz5 and 
Haz10 samples could not be differentiated from 
EVOO samples while the discrimination capability 
increased with the increment of Haz level. It may be 
noticed, though, that the 2D PCA projection captures 
far less variance: only 54%, versus 80% for the colour 
data and 67% for the e-nose. This means that e-nose 
and colour data are not very correlated. To check this 
hypothesis supervised learning needs to be applied. 
RF test results displayed in Figure 6 confirm the 
hypothesis. The boxplots sum up the errors of 10 
RF runs. Indeed e-nose and colour data taken 
together allow a significantly better prediction of both 
geographical provenance and adulteration level with 
respect to the two datasets taken singularly. The 
median geographical provenance misclassification 
error (upper plot) of e-nose+colour is circa 2.5% 
(with worse error of circa 3%), while the median error 
for the e-nose data is circa three times and that 
obtainable from the colour data more than seven 
times as much. The lower plot reports the percent 
of unexplained variance in hazelnut oil concentration 
prediction. Again, the joint datasets allow a much 
better prediction, the median error being circa one 
half of that obtainable by each component datasets.

 

Figure 8 - Variable importance outputted by rf for the adulteration quantification problem.
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Having established that joining the datasets 
increases prediction, we would like to know which 
features are more important for learning. We expect 
that, for the joint data, at least one feature from each 
dataset scores highly. Results are shown in Figure 
7 and Figure 8 for oil geographical provenance and 
adulteration level, respectively. The mean variable 
importance, always on the 10 runs, is given by the 
coloured filled bars and the black lines display the 
standard deviation.
The relative importance of features, as gauged by the 
relative height of the dark grey bars, is quite different 
for the two prediction problems: while colour and 
e-nose feature sets in Figure 7 are of comparable 
size, in Figure 8 three e-nose features are higher than 
the strongest colour feature, with Peak4 having a 
dominant role. Nevertheless, also in the latter case, 
the inclusion of colour features is beneficial, as seen 
in Figure 6. This is a case in which complementary 
features – though having a small overall effect by 
themselves - can contribute to a performance 
enhancement when fused with strong features. 
A related observation is that, according to Figure 6, 
colour features alone give a better prediction than 
e-nose features alone, if only by a small margin. 
Yet, we just saw that, when fused with e-nose 
features, colour features’ importance is smaller. An 
explanation of this fact is that at least two-colour 
features have a similar role; therefore when one is 
taken out, performance does not drop that much 
(remember that it is this change of performance that 
the RF feature importance is measuring).
The two learning problems make use of two distinct 
set of features: for provenance discrimination several 
features have a similar importance when fused (in the 
order: b, Peak10, chroma, Peak6); for adulteration-
level prediction Peak4 stands out, while it was of low 
importance in the first task. The b value indicates 
yellowness in olive oils: as Haz level increases, the b 
value increases. The EVOOs obtained from different 
provenances also have different yellowness values. 
So, a priori, the feature b could help both provenance 
discrimination and detection of Haz level. It is a result 
of the RF analysis that, in our experimental setting, 
b contributes mainly to geographical discrimination. 
Peak 10 was tentatively identified through the 
database of Kovats indices stored in the substance 
library of the Microsense software, using n-alkanes 
as standard. Peak 10 was identified as guaiacol 
(kovats index-1091), having burnt odour. South region 
EVOOs (Milas and Selcuk) have higher amounts of 
guaiacol whereas North region EVOOs (Kucukkuyu 
and Zeytindag) have lower amounts. Peak 4 was 
tentatively identified as (E)-2-hexenal (kovats 
index-854) and has a fatty odor. As the Haz level 
increases, the amount of (E)-2-hexenal decreases 
and this compound helps in the prediction of Haz 
level in EVOOs. Bozdoğan Konuşkan [31] stated that 

olive oils had guaiacol and (E)-2-hexenal as volatile 
compounds and had phenolic and burnt odour and 
green and apple odour, respectively.
It can be also noted that the uncertainty on the 
variable importance (extent of the black lines) is 
bigger for the oil provenance that for the adulteration 
level prediction. This could depend on the intrinsic 
discreetness of the classification problem, for which 
the change of a label results in a quantum difference 
in prediction. On average one third of the samples (i.e. 
24 samples) are in the test set. One single differently 
classifies sample therefore changes the classification 
rate by 1/24 ≈ 4%.

CONCLUSION
We demonstrated the advantage of joining e-nose and 
MVS for the rapid detection of hazelnut adulteration 
in extra virgin olive oils, independently of the 
geographical provenance of the oils (inside Turkey). 
PCA, if performed with different point labelling, 
already allows for smart data analysis when data 
variance is mainly explained by the first two principal 
components. For the combination of e-nose and MVS 
data, giving the complementarity of two experimental 
techniques, supervised learning with random forests 
was applied. Random forests permitted to clearly 
quantify the prediction differences between joint 
datasets and single datasets and, through feature 
ranking, gave an indication of the main chemical 
quantities responsible for the successful predictions.
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