Please use this identifier to cite or link to this item:
https://hdl.handle.net/11147/8913
Title: | Evaluation of Synchronization Measures for Capturing the Lagged Synchronization Between Eeg Channels: a Cognitive Task Recognition Approach | Authors: | Olcay, Bilal Orkan Karaçalı, Bilge |
Keywords: | EEG Brain connectivity Synchronization measures Cognitive task recognition Mutual information Phase locking value Cross correlation Nonlinear interdependency |
Publisher: | Elsevier | Abstract: | During cognitive, perceptual and sensory tasks, connectivity profile changes across different regions of the brain. Variations of such connectivity patterns between different cognitive tasks can be evaluated using pairwise synchronization measures applied to electrophysiological signals, such as electroencephalography (EEG). However, connectivity-based task recognition approaches achieving viable recognition performance have been lacking from the literature. By using several synchronization measures, we identify time lags between channel pairs during different cognitive tasks. We employed mutual information, cross correntropy, cross correlation, phase locking value, cosine similarity and nonlinear interdependence measures. In the training phase, for each type of cognitive task, we identify the time lags that maximize the average synchronization between channel pairs. These lags are used to calculate pairwise synchronization values with which we construct the train and test feature vectors for recognition of the cognitive task carried out using Fisher's linear discriminant (FLD) analysis. We tested our framework in a motor imagery activity recognition scenario on PhysioNet Motor Movement/Imagery and BCI Competition-III IVa datasets. For PhysioNet dataset, average performance results ranging between % 51 and % 61 across 20 subjects. For BCI Competition-III dataset, we achieve an average recognition performance of % 76 which is above the minimum reliable communication rate (% 70). We achieved an average accuracy over the minimum reliable communication rate on the BCI Competition-III dataset. Performance levels were lower on the PhysioNet dataset. These results indicate that a viable task recognition system is achievable using pairwise synchronization measures evaluated at the proper task specific lags. | URI: | https://doi.org/10.1016/j.compbiomed.2019.103441 https://hdl.handle.net/11147/8913 |
ISSN: | 0010-4825 1879-0534 |
Appears in Collections: | Electrical - Electronic Engineering / Elektrik - Elektronik Mühendisliği PubMed İndeksli Yayınlar Koleksiyonu / PubMed Indexed Publications Collection Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection |
Files in This Item:
File | Size | Format | |
---|---|---|---|
1-s2.0-S001048251930318X-main.pdf | 1.53 MB | Adobe PDF | View/Open |
CORE Recommender
SCOPUSTM
Citations
13
checked on Dec 20, 2024
WEB OF SCIENCETM
Citations
10
checked on Oct 26, 2024
Page view(s)
620
checked on Dec 23, 2024
Download(s)
156
checked on Dec 23, 2024
Google ScholarTM
Check
Altmetric
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.