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A B S T R A C T   

During cognitive, perceptual and sensory tasks, connectivity profile changes across different regions of the brain. 
Variations of such connectivity patterns between different cognitive tasks can be evaluated using pairwise 
synchronization measures applied to electrophysiological signals, such as electroencephalography (EEG). 
However, connectivity-based task recognition approaches achieving viable recognition performance have been 
lacking from the literature. By using several synchronization measures, we identify time lags between channel 
pairs during different cognitive tasks. 

We employed mutual information, cross correntropy, cross correlation, phase locking value, cosine similarity 
and nonlinear interdependence measures. In the training phase, for each type of cognitive task, we identify the 
time lags that maximize the average synchronization between channel pairs. These lags are used to calculate 
pairwise synchronization values with which we construct the train and test feature vectors for recognition of the 
cognitive task carried out using Fisher’s linear discriminant (FLD) analysis. 

We tested our framework in a motor imagery activity recognition scenario on PhysioNet Motor Movement/ 
Imagery and BCI Competition-III Ⅳa datasets. For PhysioNet dataset, average performance results ranging be
tween % 51 and % 61 across 20 subjects. For BCI Competition-III dataset, we achieve an average recognition 
performance of % 76 which is above the minimum reliable communication rate (% 70). 

We achieved an average accuracy over the minimum reliable communication rate on the BCI Competition-III 
dataset. Performance levels were lower on the PhysioNet dataset. These results indicate that a viable task 
recognition system is achievable using pairwise synchronization measures evaluated at the proper task specific 
lags.   

1. Introduction 

Understanding and characterization of dynamically changing fea
tures of the brain under various types of sensory, perceptual, cognitive 
events as well as neural impairments have been the subject of intense 
research for many years [1–3]. As the main outcome of this research, a 
BCI system aims to establish an external communication pathway be
tween the brain and the real world that helps to retrieve, among other 
things, the movement ability of subjects who suffer from motor dis
abilities [4]. As depicted in many review articles, neurological disorders 
can impose difficulties on individuals in interacting with their sur
roundings [5]. In line with technological advances, these systems have 
become crucial in many areas, especially in rehabilitation technologies 

[6]. For instance, speller type BCI systems can reactivate the commu
nication ability of people who suffer from speech difficulties by 
substituting the real pathway with a computerized one [7,8]. Some of 
the other well-known applications can be listed as wheelchair control 
that retrieves the movement ability for paralyzed individuals [9], 
computer control [10], internet surfing [11], deceit identification [12], 
and implicit intent recognition [13]. 

In addition to BCI studies, various clinical fields also require moni
toring and analysis of gradual changes of the brain functioning. As an 
example, a sleep stage classification method was proposed for accurate 
diagnosis and treatment of sleep related disorders [14]. In Ref. [15], the 
depth of anesthesia (DOA) was evaluated by calculating the complexity 
of electrophysiological activity. Different methods for identification of 
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epileptic brain activity were proposed in Refs. [16–18]. Dutta et al. 
proposed a method for recognizing different kinds of cognitive tasks 
[19]. Besserve et al. proposed a cognitive task performance prediction 
algorithm to predict mental fatigue [20]. As a general strategy, in these 
studies, in the training phase, an algorithm extracts salient features from 
the electrophysiological brain activity and a classification algorithm is 
trained to provide the highest performance in recognizing the desired 
activity using these features. In the recognition phase, the classifier 
decides upon the ongoing brain activity by analyzing and classifying the 
upcoming features. 

In the literature, a great deal of cognitive task recognition ap
proaches uses EEG to analyze the activity of the brain pertinent to 
cognitive/motor intentions of the participants [21]. The main reasons 
for choosing EEG for this purpose are its ease of use and harmlessness to 
the participants. The vast majority of EEG-based motor imagery activity 
recognition studies use sensorimotor oscillations (SMR) [9] to decode 
user intentions, offering reliable control of various real-world applica
tions such as robotic arm control [22] and quadcopter control [23]. 
Commanding a helicopter in a 3D environment was achieved via an SMR 
based BCI approach [24]. 

A number of SMR based features (typically found in the 8–30 Hz 
band) have been proposed in the literature such as the power increase/ 
decrease (i.e. event-related desynchronization (ERD) and event-related 
synchronization (ERS) features) [25], auto-regressive (AR) model co
efficients [26,27], time-frequency based features [28–30], Common 
Spatial Patterns (CSP) [31] and its variants [32,33]. In addition, topo
graphic voltage distribution [34] and time domain parameters with 
various derivative orders have been used with some success as features 
for motor imagery activity recognition [35]. 

During cognitive, perceptual, and sensory tasks, statistical coupling 
emerges across different regions of brain, termed as “connectivity” [36]. 
Brain connectivity phenomenon has been depicted as vital for under
standing the modular organization of the brain [37,38]. Two distinct 
statistical connectivity types are observed in the brain: functional con
nectivity refers to the temporal linear/nonlinear correlation, and effec
tive connectivity highlights causal interactions between the 
electrophysiological signals obtained from different brain regions [39]. 
Particular cognitive states as well as particular neurological disorders 
give rise to aberration of functional connectivity between electrophys
iological signals [40–44]. 

Synchronization measures have proven to be useful in elucidating 
the connectivity strength between subsystems to a certain extent. 
Numerous synchronization measures have been proposed in the litera
ture to assess brain connectivity such as mutual information [45,46], 
transfer entropy [42,44,47,48], partial mutual information [49], cor
rentropy [50], mean square contingency [51], generalized measure of 
association (GMA) [52], cosine-based similarity [41], phase locking 
value [53], and phase lag index [54], and synchronization likelihood 
[55]. Such a variety in brain synchronization measures can be attributed 
to a wide-ranging effort to distinguish brain states during different 
motor or cognitive tasks based on synchronization profiles. Even with a 
handful of brain regions, pairwise synchrony counts grow quadratically, 
providing a combinatorial explosion of synchronization profiles based 
on the presence or absence of synchrony in each pairwise evaluation. In 
case each brain state associates with a distinct synchronization profile, 
the number of brain states that can potentially be distinguished from 
each other is staggering. In spite of this potential, there are relatively few 
studies that evaluate the performance of different synchronization 
measures in a cognitive task/state recognition scenario [56–61]. 
Currently, a limited number of studies exist in the literature that use 
brain connectivity as a basis for motor imagery activity recognition [62]. 
Daly et al. obtained phase locking values from the EEG signals by means 
of an empirical mode decomposition approach to recognize different 
motor imagery activities [63]. Gonuguntla et al. proposed to classify 
EEG signals recorded under different stimuli types by constructing 
task-specific functional interactions in the form of phase locking values 

of channel pairs [64]. In another study, EEG-based connectivity features 
were also used as a biomarker for person identification [65]. A 
cross-correlogram technique was proposed for the recognition of the 
right hand/foot motor imagery activities [66]. The majority of the 
synchronization-based cognitive task characterization studies ignore the 
time lag information between electrophysiological signals. In Ref. [67], 
using cross-correlation, Hermanto et al. try to recognize motor imagery 
brain activity by finding the time lags between electrophysiological 
signal pairs across periods. In here, the main assumption is that the brain 
generates similar motor imagery related oscillatory activity within same 
time interval. 

In this study, we adopt a new perspective for cognitive task recog
nition that explores different synchronization measures to capture the 
task-specific inter-channel time lag between remote brain areas. This 
approach is based on the premise that during cognitive tasks, selective 
interactions between distant brain regions arise at a time lag profile that 
is specific to and characteristic of the task at hand [68–72]. In the 
literature, there are some studies that exploit the time lag of maximum 
information transfer in detecting functional impairment in the analysis 
of brain activity via information theoretic methods [43,73]. In addition, 
time lag between EEG channels has been used to identify the epileptic 
foci [74,75]. Van Bergen estimated and analyzed the time lag between 
EEG signals by utilizing the mutual information [76]. Boeijinga and 
Lopez da Silva estimated the time lag between EEG channels to identify 
the propagation direction of beta activity in the cat brain [77]. Adhikari 
et al. evaluated a study on mice and discovered consistent time lag by 
applying cross-correlation to envelope of instantaneous amplitudes of 
local field potentials recorded from medial prefrontal cortex and ventral 
hippocampus during awake state [78]. All these studies suggest that 
there is a systematic organization in time lag profiles between distinct 
areas of the brain during particular cognitive states. If that is the case, 
brain synchrony between different regions that arise in accordance with 
cognitive or motor tasks may go undetected by an approach that does 
not consider the inherent time lag. Indeed, it is highly possible that the 
conspicuous lack of synchrony-based task recognition studies is due to 
the inability of establishing the synchrony using methods that disregard 
this time lag. In order to address this issue, we carried out a comparative 
evaluation of well-known synchronization measures to assess activity 
specific time lag organization between EEG channels in a motor imagery 
activity recognition scenario. This approach can also be easily adapted 
to analyze other types of cognitive tasks/states. With further adapta
tions, it can be used on continuously flowing EEG data as required in 
online BCI applications. 

The remainder of this paper is organized as follows: In the Materials 
and Methods Section, the properties of the EEG datasets used in this 
study are described, accompanied by an operational flow diagram of the 
proposed method. Next, the definitions and formulations of coherence 
measures are provided. In Results, the classification and the novel cross 
validation schemes are summarized, and performance results obtained 
via the proposed method are presented. In Discussion, we elaborate on 
the merits and drawbacks of the approach and the obtained results in 
comparison with a benchmark method. The final section concludes the 
study. 

2. Materials and Methods 

In this section, we first describe the datasets used in this study. Next, 
the operational pipeline of the proposed method is given, along with the 
calculation of the activity specific time lag and construction of training 
and test feature vectors generated from both training and test datasets. 
Finally, the definitions and formulations of the applied synchronization 
measures are presented. 

2.1. Dataset 

In this study, comparative performance evaluations were carried out 
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on two different motor imagery datasets, BCI Competition-III Ⅳa and 
PhysioNet Motor Movement/Imagery Dataset. The former dataset 
comprises EEG recordings of 5 subjects as they perform 140 right hand 
and 140 right foot imagery activity in a randomized order [79]. This 
dataset was collected using 118 electrodes according to extended in
ternational 10/20 system at a sampling frequency of 1000 Hz [80]. 
During each trial, subjects performed the imagery activities approxi
mately for 3.5 s. We used the 100 Hz down-sampled version of this 
dataset. 

The latter dataset comprises EEG signals of 109 subjects recorded 
under real and imaginary motor tasks [81]. EEG signals were collected 
via a BCI2000 system with 160 Hz sampling frequency [82]. The 
recording system was international 10/10 system with 64 electrodes. 
For each subject, the experiment was composed of 14 separate sessions, 
beginning with two eyes open/eyes closed sessions. The progression of 
the remaining 12 sessions is given in Table 1. 

Each task period lasted 4.1 s, followed by a rest period with a 
duration of 4.2 s. The graphical demonstration of the task/rest periods is 
given in Fig. 1. Each session contains a total of 30 mixed blocks of task 
and rest periods. 

In this study, we evaluate the performance of the proposed activity 
recognition framework using the EEG recordings of right fist versus left 
fist motor imagery task sessions of the first 20 subjects in the dataset. 

As a preprocessing step, for both datasets, we re-referenced the sig
nals to the common average to reduce the effect of volume conduction 
[44,83,84]. Then, to avoid the phase distortion, we filtered the signals 
with a finite-impulse response band-pass filter with a passband of 
8–30 Hz (see Fig. 2). Using the task initiation indices given in these 
datasets, we extracted the task periods of the EEG signals with the cor
responding task label indicating the type of motor imagery activity. 

2.2. Proposed Method for Motor Imagery Recognition 

The flow diagram of the proposed method is given in Fig. 3. Details of 
both training and test phases are given below. 

2.2.1. Training Phase 
In the Synchronization Calculation block, for the task periods of each 

type of imagery activity, we calculated the synchronization values be
tween EEG signals between each channel pair for different time lags τ 
running from � 125 ms to 125 ms [74]. Then, in the τopt block, for each 
type of imagery activity (say ImgAct1 and ImgAct2), the time lag τImgAct1

i;j 

and τImgAct2
i;j that maximize the average synchronization value between 

channels i and j is determined as the activity-specific time lag. For each 
type of imagery activity, we calculate the inter-channel activity-specific 
time lags τImgAct1

i;j and τImgAct2
i;j for each channel pair ði; jÞ using 

τImgAct1
i; j ¼ argmax

τ

�
1

NImgAct1

X

k2IImgAct1

D
�

sTrain
i;k ; sTrain

j; k ; τ
��

(1)  

and 

τImgAct2
i; j ¼ argmax

τ

�
1
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D
�
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j; k ; τ
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(2)  

where k is the index of the period, IImgAct1 and IImgAct2 represent the 

indices of the respective imagery task periods in the training set, and 
NImgAct1 and NImgAct2 denote the corresponding number of periods. 
Furthermore, sTrain

i;k is the EEG signal from the ith channel of the kth im
agery activity period. Note also that argmax

ρ
qðρÞ returns value ρ* over 

which the function qð⋅Þ is maximized. Finally, Dðs1; s2; τÞ denotes the 
synchronization measure of choice that measures the relation between 
EEG channels s1 and s2 evaluated at a time lag τ. Then, in the Classifier 
Training for FLD block, for the subsequent recognition of each imagery 
activity period k in the training dataset, the feature vector ξk that con
tains synchronization values between EEG signals were constructed at 
time delays τImgAct1

i;j and τImgAct2
i;j as 

ξk ¼

2
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(3)  

by collecting inter-channel synchronization values calculated at 
activity-specific time lags from both activities into a column vector. In 
the expression above, M represents the number of channels (M ¼ 118 for 
BCI Competition-III dataset, M ¼ 64 for PhysioNet dataset) providing 
feature vectors of size MðM � 1Þ� 1. By using the training feature vec
tors, we calculated the projection vector and bias parameters of the 
Fisher’s linear discriminant classifier given as [85], 

f ðξÞ ¼ sign
�
wT ξþ w0

�
(4)  

where signðρÞ returns � 1 when ρ is less than or equal to zero and þ1 
when ρ is greater than zero, w is the linear projection vector that max
imizes the criterion function expressed as 

JðwÞ ¼
wT SBw
wT Sww

(5)  

where SB and Sw are between- and within-class scatter matrices. The 
projection vector is obtained as 

w ¼ ðΣþ1 þ Σ� 1Þ
� 1
ðμþ1 � μ� 1Þ (6)  

where Σþ1 and Σ� 1 are covariance matrices calculated on both type of 
feature vectors, and μþ1 and μ� 1 are the respective mean feature vectors. 
The bias term w0 is found so that it maximizes the classification rate on 
the training set. 

2.2.2. Test Phase 
In the Synchronization Calculation block, for each task period of in

terest characterized by EEG signals s1; s2; …; sM, we constructed a 

Table 1 
Content of remaining 12 sessions with real/imagery task.  

Task Name Real Motor Activity 
Sessions 

Imaginary Motor Activity 
Sessions 

Right/Left Fist 3, 7, 11 4, 8, 12 
Both Fist/Both 

Feet 
5, 9, 13 6, 10, 14  

B.O. Olcay and B. Karaçalı                                                                                                                                                                                                                   



Computers in Biology and Medicine 114 (2019) 103441

4

feature vector ξ using the inter-channel synchronization values calcu
lated at the same activity-specific time lags τImgAct1

i;j and τImgAct2
i;j and 

organized into a matching column vector as 

ξ ¼

2
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(7) 

In the Classification Using FLD block, the imagery activity period in 
question was then decided upon by carrying out a Fisher’s linear 
discriminant analysis using the formula given in Eq. (4), assigning test 
feature vectors to either first or second type of imagery activity (i.e. 
ImgAct1 or ImgAct2). 

2.3. Synchronization Measures 

The lagged synchronization between EEG channels was calculated 
using 6 different methods; centered cross-correntropy [86] and mutual 
information [87], phase locking value [88], cross correlation, nonlinear 
interdependency [89] and cosine-based similarity [41]. The details of 
each of these methods are given below. It is important to note that, by 
using different time lags τ ranging from � 125 ms to 125 ms, we calcu
lated the synchronization value between the signals that falls into the 
time window illustrated with dashed lines in Fig. 4. In the rest of this 
section, we represent the discretized and delayed signal yi� fsτ as yτ

i . Here, 
τ denotes the time lag, an integer multiple of 1�fs in milliseconds, and fs 
denotes the sampling frequency in Hertz. In Fig. 5, we illustrated the 
evolution of average synchronization between C3–C4 channels during 
left fist imagery activity on EEG signals of three sessions of Subject-1 in 
PhysioNet dataset for varying time lags according to the synchronization 
measures listed above. 

2.3.1. Time-Delayed Cross-Correntropy 
In a general sense, correntropy is a measure of similarity that uses 

both the probability and the time domain structure and evaluates how 
similar the two signals are simultaneously in these two aspects [90]. The 
formulation of the cross-correntropy measure between signals X and Y is 
given in terms of their samples ðxi; yjÞ for i; j ¼ 1; 2; ::;N as 

DcorrentropyðX; Y; τÞ ¼ 1
N

XN

i¼1
κ
�
xi; yτ

i

�
(8)  

where N is the number of data samples and κð⋅; ⋅Þ is the Laplacian kernel 
function [91] defined as 

κðz1; z2Þ ¼ expð � jz1 � z2jÞ (9)  

where expð⋅Þ denotes the exponential function. 

2.3.2. Time-Delayed Mutual Information 
Mutual information is a well-known measure of how much uncer

tainty is shared between two processes. The time-delayed mutual in
formation between signals is formulated as 

Fig. 1. Illustration of timing diagram of a session with rest and task periods (PhysioNet Dataset).  

Fig. 2. Illustration of the original EEG signals and the filtered EEG signals of a 
subject during right hand motor imagery activity (BCI Competition-III dataset). 
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DMIðX;Y; τÞ ¼
Z ∞

� ∞

Z ∞

� ∞
fXYτ ðx; yÞ log

fXYτ ðx; yÞ
fXðxÞ fYτ ðyÞ

dx dy (10)  

where fXðxÞ and fYτ ðyÞ are the respective first-order marginal probability 
densities, and fXYτ ðx; yÞ is the corresponding joint probability density. 
However, obtaining the required probability densities above from a 
limited number of samples is not straightforward. A common approach 
is to partition the samples into several bins and calculate histograms. 
Another strategy is to use kernel-based estimators. Yet, these methods 
need large sample sets to provide accurate mutual information estima
tion. As an alternative, Kraskov et al. proposed a method based on 
neighborhood statistics of the data samples given by 

DMIðX; Y; τÞ ¼ ψðkÞ �
�
ψðnx þ 1Þ þ ψ

�
ny þ 1

� �
þ ψðNÞ (11)  

where ψð⋅Þ is the digamma function [92]. The parameters nx; ny denote 
the number of points whose distances are less than εðiÞ =2 to points xi 
and yτ

i respectively, while εðiÞ =2 is the maximum of the Euclidean dis
tance between xi and yτ

i and their kth neighbor, N is the number of 
samples, and 〈⋅〉 represents the calculation of average over i. 

2.3.3. Phase Locking Value 
Basically, PLV calculates the stability of the phase difference be

tween two oscillations [88] by averaging the instantaneous phases 
across trials. The instantaneous phases are calculated by taking the 
Hilbert transform of the signals. For a signal xðtÞ, its Hilbert transform is 
defined as 

~xðtÞ ¼
1
π PV

Z ∞

� ∞

xðt’Þ

t � t’ dt’ (12)  

where PV indicates the Cauchy Principal Value. The instantaneous phase 
of the signal xðtÞ can then be calculated using 

θxðtÞ ¼ arctan
�

~xðtÞ
xðtÞ

�

(13) 

In our analysis, we characterized the phase locking value between 
channels i and j in a given frame using 

DPLVðX;Y; τÞ ¼ 1
N

�
�
�
XN

i¼1
exp
n

j
�

θxi � θyτ
i

�o�
�
� (14)  

where N is the common signal length and θxi and θyτ
i 

represent the 
instantaneous phases of the corresponding signals [63,64,93]. The PLV 
equals 1 if the phase difference is constant, and 0 when the phase dif
ference shows a random distribution across trials. 

2.3.4. Cross-Correlation 
Cross-correlation is the measure of the linear dependence between 

two variables X and Y. The sample estimate of the cross-correlation can 
be calculated using 

DxcorrðX; Y; τÞ ¼ 1
N � fsτ

XN� fsτ

i¼1
xiyτ

i (15) 

Fig. 3. Flow diagram of the proposed method.  

Fig. 4. Time windows from channels chi and chj used in the calculation of inter- 
channel synchrony for τ < 0, τ ¼ 0 and τ > 0. 
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The sign of the cross-correlation is an indicator of the direction of the 
correlation. In this study, we take the absolute value of the resulting 
correlation value to find the activity-specific time lags based on 
magnitude only. 

2.3.5. Nonlinear Interdependency 
Consider the time series data of the signals X and Y collected into 

phase space vectors xi ¼ ðxi; xi� d;…; xi� ðm� 1ÞdÞ
T and yj ¼

ðyj; yj� d;…; yj� ðm� 1ÞdÞ
T where m and d represent the phase space 

dimension and the time delay defined in phase space, respectively, and 
xi and yj are the samples of the time series. Then, the average Euclidean 
distance between nth phase space vector of observation X and its first k 
nearest neighbors is given as 

Rk
nðXÞ ¼

1
k
Xk

p¼1

�
�xn � xrn;p

�
�2 (16)  

where rn;p represents the indices of the nearest neighbors of nth phase 
space vector of observation xi and k⋅k is the Euclidean norm. Likewise, 
the Yτ -conditioned average Euclidean square distance to its k nearest 
neighbor of the vectors of observation X is 

Rk
nðXjY

τÞ ¼
1
k

Xk

p¼1

�
�
�xn � xsτ

n;p

�
�
�

2
(17)  

where Yτ is the delayed version of Y, and sτ
n;p denotes the indices of the 

nearest phase space vectors of Yτ. Then, the nonlinear interdependence 
measure between the time series X and Y [89] is defined as 

Dnonlinear intðX;Y; τÞ ¼ 1
N

XN

n¼1

Rk
nðXÞ

Rk
nðXjYτÞ

(18) 

By construction, Rk
nðXjYτÞ � Rk

nðXÞ, so the result is between 0 and 1. 
The parameter N denotes the sample size. In this study, we selected k as 
10, dimension m of phase space vectors as 6, and delay for phase space 
representation as 1 as initially suggested by Bandt and Pompe [94–96]. 

2.3.6. Cosine-based Similarity 
This synchronization measure calculates and subtracts the angle 

between two signal vectors from π [41], providing 

DcosineðX;Y; τÞ ¼ π � arccos
�
hx; yτi

jj x jj kyτk

�

(19)  

where 〈⋅; ⋅〉 and k⋅k represent the inner product and the norm operators 
respectively. The maximum synchronization between signals occurs 
when the angle between them is zero. 

3. Results 

In order to determine the way in which recognition performance 
varies in response to varying size of the training set, we chronologically 
partitioned the dataset in two different ways as follows:  

� In scenario-1, for PhysioNet dataset, imagery activity periods in 
session-4 were used for training, imagery activity periods in session- 
8 and session-12 were used for testing purposes. For BCI 
Competition-III dataset, the first 94 imagery activity periods were 
used for training, and the remaining 186 imagery activity periods 
used for testing purposes. For each dataset, this corresponds to using 
the first %33,3 of total imagery activity periods for training, and the 
remaining %66,7 of total imagery activity periods for testing.  
� In scenario-2, for PhysioNet dataset, imagery activity periods in 

session-4 and session-8 were used for training while imagery activity 
periods in session-12 were used for testing purposes. For BCI 
Competition-III dataset, the first 186 imagery activity periods were 
used for training, and the remaining 94 imagery activity periods used 
for testing. For each dataset, this corresponds to using the first %66,7 
of total imagery activity periods for training, and the remaining % 
33,3 for testing. 

Note also that this kind of partitioning of the data in training and test 
sets is also more realistic compared to a typical n -fold cross validation 
scheme with randomly selected training and test sets, since training 
naturally precedes testing in real applications. In addition, it is also 
useful to evaluate how much improvement can be expected by 
increasing the amount of training data. 

Prior to classifier construction, to reduce the dimensionality, we 
have applied feature selection according to each feature’s Fisher ratio 
[97], defined as 

Fj ¼

�
�μþ1; j � μ� 1;j

�
�

σþ1;j þ σ� 1;j
(20)  

where μþ1;j, μ� 1;j and σþ1;j, σ� 1;j represent the mean and standard devi
ation of the feature indexed by j on both classes, with j ¼ 1;…;MðM �
1Þ. In each chronological cross validation scenario, we selected the 
features that had higher Fisher ratio values than the mean plus two times 
the standard deviation of all Fisher ratios across all features. For each 
scenario, the average classification performance results over 20 subjects 
from the PhysioNet dataset and the average performance over all 5 
subjects of BCI Competition-III dataset are given in Table 3 and Table 4. 

For comparison purposes, we also evaluated the recognition perfor
mance using a priori selected channel pairs that were identified to be 
meaningful for right hand versus left hand imagery activity 

Fig. 5. The time lag versus average synchronization value of all six methods included in this study for the C3–C4 pair of Subject-1 (left fist imagination- 
PhysioNet Dataset). 
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discrimination in previous EEG connectivity-based studies. Krusienski 
et al. has proposed to use 9 channels (producing 36 channel pairs) to 
elucidate the merits and drawbacks of the phase locking value (PLV) 
method for imagery activity recognition [61]. The performance of 
additional electrode subsets were also compared for PLV-based activity 
recognition [98]. Daly et al. argued for the importance of using all 
spatial and spectral information in the connectivity-based BCI frame
work which amounts to using all channel pairs [63]. Wang et al. also 
proposed using a large number of electrode pairs to couple up the 
motor-activity related brain regions for activity recognition [99]. Rathee 
et al. proposed three channel pairs arguably offering the greatest 
contribution for right hand/left hand imagery activity recognition 
[100]. Hamedi et al. identified additional channel pairs for right- and 
left-hand imagery activity recognition [101]. These a priori channel 
pairs are listed in Table 2. Note, however, these channels/channel pairs 
were identified for right fist versus left fist recognition; thus we applied 
them for performance evaluation on PhysioNet dataset only and not on 
BCI Competition dataset as it contains right hand versus right foot im
agery activity periods. A similar analysis using a priori selected channels 
for right hand/right foot recognition was not possible as a comparable 
list of channels that discriminate between right hand and right foot 
activities is lacking from the literature. In Ref. [102], authors identified 
EEG channel networks for BCI Competition-III Ⅳa dataset claimed to be 
highly discriminative for right foot/right hand motor imagery activity. 
However, these channel networks are highly subject and frequency 
specific, and thus, not viable for performance comparison across 
different subjects (see Ref. [102] and Table I therein). As a result, we did 
not include these channels. The performance results obtained using 
these a priori selected right hand versus left hand connectivity features 
are also given in Tables 3 and 4 for scenario-1 and scenario-2 
respectively. 

Finally, we compared the performance of the cognitive task recog
nition framework evaluating the various synchronization measure with 
a well-known BCI strategy, CSP [31]. In the training phase, we filtered 
the signals with 8–30 Hz FIR band-pass filter and obtained the CSP filter 
(m ¼ 3). We then applied the CSP filter on both training and test pe
riods. We extracted the log-variance features from CSP-filtered activity 
periods for recognition purpose. The classification was evaluated again 
using a FLD analysis. We demonstrate the average performance results 
in Table 5. 

4. Discussion 

The immediate observation on the results in Tables 3 and 4 is the 
stark discrepancies between the recognition performances achieved on 
the PhysioNet and BCI Competition-III Ⅳa datasets. Based on the per
formance evaluation criteria proposed by Müller [103], this appears to 
be a common trait of the PhysioNet dataset as observed in similar studies 

that report results only on a limited, well-performing subset of the 
subjects (Table 6) [104–108]. While this can be justified to a certain 
extent by arguing that poor-performing subjects belonged to a presumed 
BCI-illiterate category, it falls at odds with the original premise of in
dependent experimental validation. Our results, however, have been 
obtained from the first 20 subjects in PhysioNet dataset, without any 
performance-related exclusion criteria in order to avoid such 
controversies. 

Average performances on BCI Competition-III dataset given in 
Table 3 (in Scenario-1) reveals that mutual information method can 
better capture the task specific time lags when the size of the training 
dataset is small. However, with a larger training dataset, cosine-based 
similarity captured the task specific time lags more accurately and 
achieved the best average performance on both PhysioNet and BCI 
Competition-III datasets (see Table 4). Performance of both mutual 
information-based and cosine similarity-based methods for both sce
narios for different BCI Competition-III subjects shown in Table 7 indi
cate that for three well-performing subjects, the recognition accuracies 
are in the %70-%90 interval, while the accuracies for the other two is 
around %60-%65. 

To see the ranking of the proposed method, by using original train 
and test dataset sizes given in the competition website, we also 
compared our recognition performances with performances given in the 
BCI Competition-III winner tables (performance rankings are given in 
the competition website). The mutual information-based and cosine- 
based activity recognition method ranked the seventh place and elev
enth places respectively. 

Note that, further improvements may be expected on the recognition 
performance with additional efforts such as elimination of the back
ground activity or using tailored spatial filters [109]. The average per
formance can also improve with the size of the training set (BCI 
Competition-III dataset contains more imagery activity periods than 
PhysioNet dataset). This suggests that using larger training sets or longer 
training sequences may lead to better learning and a higher recognition 
rate than reported here. 

In this study, our main aim was to highlight the potential of the inter- 
channel activity specific time lags in a cognitive task recognition 
scheme. The feature vectors constructed using these activity-specific 
time lags were expected to be an indicator of the dichotomy between 
different cognitive tasks (right/left hand motor imagery for PhysioNet, 
right hand/right foot for BCI Competition-III dataset). In that spirit, we 
used FLD analysis as a benchmark classifier. However, for the highest 
recognition performance, more sophisticated classification methods 
such as support vector machine (SVM) [110], extreme learning machine 
[111], kernel based extreme learning machine [112] or sparse Bayesian 
learning machine classifiers [113] can certainly be evaluated. 

Yet, an extended analysis involving linear and nonlinear SVM clas
sifiers on both Scenario-1 and Scenario-2 that we have carried out re
veals interesting results (please see Table 8 and Table 9 below). Linear 
SVM outperformed the FLD analysis, especially on the BCI Competition- 
III dataset, in all synchronization measures while performance dropped 
using a radial basis function kernel. Note that, in this analysis, the kernel 
width parameter σ for nonlinear SVM is calculated as 

σ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
LðL � 1Þ

XL� 1

i¼1

XL

j¼iþ1

�
�ξi � ξj

�
�2

v
u
u
t (21)  

where L is the total number of training feature vectors ξi, k⋅k represents 
Euclidean norm. This suggests that a linear classification approach is 
more reliable in this instance, potentially due to high number of features 
against a low number of training samples. Furthermore, a clear superi
ority of linear maximum margin classification on FLD analysis indicates 
that the generalization ability of FLD analysis is hampered when training 
samples are low in number, possibly due to the inability to calculate 
class covariance matrices with sufficient accuracy. 

Table 2 
The a priori selected channel pairs given in previous studies for right fist/left fist 
recognition.   

Number of 
Pairs 

Number of 
Channels 

Channels/Channel Pairs 

Krusienski 
et al. 

36 9 [T7, F3, P3, C3, Cz, C4, P4, F4, T8] 

Wei-CW 
et al. 

45 10 [C5, FC3, CP3, C3, C1, C2, C4, FC4, 
CP4, C6] 

Wei-CB1 
et al. 

25 10 [C5, FC3, CP3, C3, C1] ↔ [C2, C4, 
FC4, CP4, C6] 

Wei-CB2 
et al. 

50 15 [AFz, Fz, FCz, F1, F2] ↔ [C5, FC3, 
CP3, C3, C1], [AFz, Fz, FCz, F1, F2] 

↔ [C2, C4, FC4, CP4, C6] 
Wang et al. 3 3 [FCz, C3, C4] 
Rathee et al. 3 5 [CP1 ↔ C4], [C3 ↔ FC1], [C4 ↔ Cz] 

Hamedi 
et al. 

5 6 [C3 ↔ C4], [C1 ↔ Cz], [C2 ↔ Cz], 
[C1 ↔ C2], [C2 ↔ CPz]  
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In this study, we tested our framework with two datasets having 
160 Hz. (PhysioNet) and 100 Hz. (BCI Competition-III) sampling fre
quencies. Note that, the sampling frequency of the EEG signals consti
tutes a fundamental limitation for the method that calculates and uses 
the inter-channel time lags that emerge between EEG signals during 
particular cognitive tasks. Actually, it is possible that the true inter- 
channel time lags deviated from those calculated by the synchroniza
tion measures evaluated here due to the low sampling frequency. It is 

clear that, increasing the sampling frequency may be expected to lead to 
an increase in the accuracy of the activity-specific time lags that emerge 
between channels are calculated, as it would provide more data points 
for the calculation. However, it should also be noted that a higher 
sampling frequency would cause dramatic increase in computation time. 
In this study, even for a low sampling frequency, we showed that the 
inter-channel time lags that maximizes the average synchronization 
values for each EEG channel pairs (i.e. activity-specific time lags), have 
potential in characterizing the cognitive activity during a task period. 
Another limitation, the present framework disregards the subject- 
specific frequency bands. In general sense, filter bank strategy over
comes the subject-specific frequency band identification problem by 
incorporating different band-pass filters and identifies most discrimi
native frequency-specific features before the classification [33,114, 
115]. For our framework, instead of using 8–30 Hz frequency band, a 
filter bank structure can be included into the method before the deter
mination of activity-specific time lags. This enables us to calculate and 
use the frequency-resolved activity-specific time lags may also be ex
pected to improve the recognition performance, albeit in expense of 
computation time [116]. Still, once the salient subject-specific fre
quency bands are determined, activity-specific time lags can easily be 

Table 3 
The average % performance results of subjects for different datasets for Scenario-1. The rows marked with an asterisk represents the a priori selected channel pairs 
(Right/Left Hand) from the literature.   

Mutual 
Information 

Cosine-Based 
Similarity 

PLV Nonlinear 
Interdep. 

Cross 
Correlation 

Cross 
Correntropy 

PhysioNet Motor Imagery Dataset 
(Right/Left Fist Imagery) 

Fisher ratio 58,33 � 10,57 56,83 � 10,17 54,67 � 10,83 57 � 11,44 55,67 � 8,02 56,16 � 15,07 
*Krusienski,2012 53,83 � 10,66 54,16 � 8,15 55,16 � 11,96 53 � 7,1 51,67 � 8,95 53,17 � 10,45 
*Wei-CW, 2007 54 � 13,35 54,67 � 9,75 53,67 � 10,97 56,16 � 12,29 59,83 � 11,96 56,67 � 9,85 
*Wei-CB1, 2007 53,67 � 6,65 54,33 � 10,71 51,33 � 8,94 54 � 6,89 53,5 � 9,07 52,5 � 7,78 
*Wei-CB2, 2007 58,5 � 9,14 52,33 � 10,71 53,5 � 10 53,33 � 8,71 54,5 � 9,74 50,83 � 9,48 

*Wang, 2006 53,17 � 6,7 55,33 � 8,67 54,83 � 8,12 52,16 � 8,67 53,5 � 9,39 53,17 � 11,67 
*Rathee, 2017 55 � 10 53,17 � 11,41 54,83 � 8,94 52 � 10,39 56,5 � 11,21 54,67 � 9,32 
*Hamedi, 2016 53,33 � 9,97 50,5 � 6,76 52,83 � 9,13 51,83 � 9,08 54 � 6,89 53,16 � 9,64 

BCI Competition III Fisher ratio 76,69 � 12,88 70,52 � 9 68,08 � 8,7 72,55 � 9,65 72,65 � 8,77 75,95 � 11,56  

Table 4 
The average % performance results of subjects for different datasets for Scenario-2. The rows marked with an asterisk represents the a priori selected channel pairs 
(Right/Left Hand) from the literature.   

Mutual 
Information 

Cosine-Based 
Similarity 

PLV Nonlinear 
Interdep. 

Cross 
Correlation 

Cross 
Correntropy 

PhysioNet Motor Imagery Dataset 
(Right/Left Fist Imagery) 

Fisher ratio 59,33 � 15,12 61 � 10,2 59,67 � 15,06 60,67 � 13,83 60,33 � 15,37 59,33 � 16,17 
*Krusienski, 

2012 
58,67 � 13,26 56 � 13,22 57,67 � 17,34 57,33 � 15,2 57,33 � 12,12 55,67 � 11,9 

*Wei-CW, 2007 51 � 20,55 57 � 15,81 56,67 � 16,11 55,67 � 17,06 58,67 � 12,34 51,67 � 21,61 
*Wei-CB1, 

2007 
55,33 � 15 52 � 11,15 53,33 � 10,59 56,67 � 13,42 54,67 � 13,08 48,33 � 12,4 

*Wei-CB2, 
2007 

55 � 8,88 53,33 � 16,32 56 � 13,74 55,33 � 16,9 53 � 10 58,33 � 16,31 

*Wang, 2006 47,33 � 15,43 56,33 � 11,94 54,67 � 12,9 54,67 � 12,72 54 � 8,62 56,33 � 15,51 
*Rathee, 2017 54,33 � 15,48 55,33 � 14,36 50 � 10,92 53,33 � 14,66 56 � 12,86 55,33 � 17,58 
*Hamedi, 2016 51 � 11,9 54,3 � 10,65 51,33 � 10,61 51,67 � 13,48 53,67 � 10,91 52,67 � 11 

BCI Competition III Fisher ratio 75,76 � 12,3 76 � 8,43 68,41 � 11,98 70,73 � 8,79 68,83 � 9,72 72 � 13,07  

Table 5 
Comparison of average performances (Our method versus CSP).  

Method PhysioNet Dataset BCI Competition-III Dataset 

Scenario-1 Scenario-2 Scenario-1 Scenario-2 

CSP (m ¼
3)  

% 
53,83 � 4,87 

% 
55,65 � 9,97 

% 
82,33 � 11,46 

% 
84,67 � 15,38 

Our 
method 
(Cosine- 
based) 

% 
56,83 � 10,17 

% 61 � 10,2 % 70,52 � 9 % 76 � 8,43  

Table 6 
Performance demonstration styles of studies that use the PhysioNet dataset.  

Author Proposed Method Performance Demonstration 
Style 

Park et al. 
[104] 

Augmented Complex CSP Eliminates subjects with 
performance below the %64 

Handiru et al. 
[106] 

Optimized Bi-Objective Chan. 
Selection Method 

Uses 35 best performing 
subjects 

Athif et al. 
[108] 

Wavelet transform and CSP 
filtering based method 

Eliminates subject with 
performance below the %64 

Kim et al. 
[105] 

Complex CSP with Strong 
Uncorrelating Transformation 

Eliminates subjects with 
performance below the %64  

Table 7 
Individual performances of BCI Competition-III subject for Scenario-1 and 
Scenario-2. The subjects al, aw and ay are the well-performing subject.  

Subject Scenario-1 Scenario-2 

Mutual 
Information 

Cosine-Based 
Similarity 

Mutual 
Information 

Cosine-Based 
Similarity 

aa % 64,36 % 67,55 % 70,52 % 73,68 
al % 90,95 % 82,97 % 92,63 % 84,21 
av % 62,23 % 60,1 % 64,21 % 64,21 
aw % 79,78 % 65,95 % 66,31 % 73,68 
ay % 86,17 % 76,06 % 84,21 % 84,21  
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calculated and used for subsequent recognition purposes [117]. 
In the present study, we aimed to determine the most powerful 

synchronization method among six different methods that captures the 
most appropriate time lag (activity-specific time lag) between EEG 
channels that the synchronization (evaluated at this lag) is characteristic 
to the particular cognitive tasks. In the literature, many different syn
chronization measures were proposed and subjected to performance 
comparison using various types of synthetic and real datasets collected 
under various experimental conditions [56,59,118,119]. However, the 
main outcome of these studies indicates that there is no universal syn
chronization measure that works better than all others. It appears a 
general consensus that different measures calculate the synchronization 
by taking different feature types of the input signals into consideration 
[56,57]. During cognitive tasks, the brain presents dynamically chang
ing electrophysiological characteristics and also, the functional con
nectivity between distant regions are affected from these dynamical 
changes. Each of the different synchronization methods used in this 
study attempts to find the activity-specific time lags between electro
physiological signals as captured by the method itself. Since each 
method evaluates a different aspect of the signals, it is not surprising to 
observe dissimilar time lags. In the absence of full knowledge of exact 
time lags between the signals, it is impossible to tell which method is 
more accurate in calculating the time lag of interest. 

In addition to those evaluated in this study, further synchronization 
estimation methods exist in the literature. Notably, the transfer entropy 
has been frequently used in both sensor space and source space con
nectivity studies [42,44,47,72,120,121]. However, due to the high 
computational requirements during its calculation, transfer entropy 
does not appear to be a viable method for brain activity recognition. As a 
result, it was not included in this work. Even then, calculating the 
mutual information, correntropy and nonlinear interdependency mea
sures for 20 subjects in PhysioNet dataset and 5 subjects for BCI Com
petition-III dataset took several days. However, for PhysioNet dataset, 
the required computation time for cross-correlation and cosine-based 
similarity are about 15,6 s and 13,7 s per subject, respectively. As for 
BCI Competition-III dataset, for 5 subjects, the corresponding compu
tations took 154,7 s and 202,2 s per subject. While these computation 
times are not extensive, with the high speed and parallel computing 
architectures, cosine similarity-based measure stands out as the more 
practical synchronization evaluation method for a real time cognitive 
status analysis. 

The recognition performance results for the PhysioNet dataset, given 
in both Tables 3 and 4, shows that we did not achieve the minimum 
reliable communication rate (%70). These low performances may be due 
to relatively small training sample size or low-quality of EEG recordings. 

For the small sample size problem of FLD and/or SVM classifiers, 
increasing the number of training samples may require long training 
sequences which then very tiring and therefore challenging for the 
participants. Pooling and using informative feature vectors from all 
other subjects may also improve the classification performance of the 
proposed framework. Y. Jiao et al. proposed sparse group representation 
method (SGRM) to reduce the required training time without any per
formance degradation for motor imagery brain computer interface ap
proaches [122]. Briefly, this method identifies and uses informative 
feature vectors (also features) from a dictionary matrix constructed 
using both non-target subjects’ and target subject’s training feature 
vectors. For our study, as proposed in Ref. [122], exploiting the infor
mative features and feature vectors obtained from both target and 
non-target subjects’ training task periods (for each subject, feature 
vectors are constructed via inter-channel synchronization values eval
uated at activity-specific time lags) may improve the recognition per
formances especially obtained for PhysioNet dataset. Similar sparse 
representation approach for frequency-resolved informative feature 
identification was proposed and can be applied to our framework [123]. 
Another problem, since we don’t accurately know when the subject 
begins and ends the imagination of the motor movement task, we used 
whole task period EEG signals to calculate the activity-specific time lags. 
For an accurate brain activity characterization, an extended approach 
that jointly optimizes the time window and the frequency band can also 
be adopted in our framework before the inter-channel activity-specific 
time lag estimation [124]. 

For both PhysioNet and BCI Competition-III datasets, we listed the 
electrode pairs that provide meaningful differences between two 
cognitive tasks along with five most significant electrode pairs that 
achieve maximum separability among different type of motor imagery 
activities in Table 10. We observed that on the BCI Competition-III 
dataset, all synchronization measures identified couplings between 
similar group of electrode pairs. However, on the PhysioNet dataset, the 
groups of electrode pairs identified to be in synchrony differed for the 
different synchronization measures. While this makes the interpretation 
of identified couplings challenging meaningful comparisons can still be 
made as follows; 

A first-look analysis on PhysioNet dataset (right fist versus left fist 
imagination) reveals that cosine-based similarity captured mostly the 
parietal-central electrode couplings, cross-correlation the parietal- 
parietal electrode couplings, nonlinear interdependency central- 
parietal electrode pairs, mutual information the frontal and parietal 
electrode couplings, correntropy the frontal electrode couplings and 
finally PLV the parietal-parietal electrode couplings. 

As for the BCI Competition-III (right hand versus right foot 

Table 8 
The comparison of the classification methods for Scenario-1.   

Cosine Cross Corr. Nonlinear Int. Correntropy Mutual Information PLV 

FLD PhysioNet 56,83 � 10,17 55,67 � 8,02 57 � 11,44 56,16 � 15,07 58,33 � 10,57 54,67 � 10,83 
BCI Comp. 70,52 � 9 72,65 � 8,77 72,55 � 9,65 75,95 � 11,56 76,69 � 12,88 68,08 � 8,7 

Linear SVM PhysioNet 57,83 � 10,38 58,17 � 10,73 50,17 � 2,28 50,17 � 9,93 58,5 � 10,78 60,5 � 10,99 
BCI Comp. 74,46 � 9,52 72,97 � 10,93 77,65 � 11,89 77,34 � 9,5 77,97 � 10,35 70,31 � 10,58 

Nonlinear SVM (RBF Kernel) PhysioNet 58,83 � 11 55,83 � 11,54 58,16 � 9,58 55,67 � 14,71 59,83 � 9,33 58,83 � 10,21 
BCI Comp. 71,7 � 8,07 72,12 � 8,33 76,38 � 12,36 77,02 � 8,42 75 � 10,52 69,78 � 8,22  

Table 9 
The comparison of the classification methods for Scenario-2.   

Cosine Cross Corr. Nonlinear Int. Correntropy Mutual Information PLV 

FLD PhysioNet 61 � 10,2 60,33 � 15,37 60,67 � 13,83 59,33 � 16,17 59,33 � 15,12 59,67 � 15,06 
BCI Comp. 76 � 8,43 68,83 � 9,72 70,73 � 8,79 72 � 13,07 75,76 � 12,3 68,41 � 11,98 

Linear SVM PhysioNet 59,33 � 16,02 61,67 � 14,8 51 � 10,43 62,33 � 16,51 59,33 � 14,96 59,67 � 15,36 
BCI Comp. 79,57 � 9,52 77,26 � 9,75 81,05 � 8,93 80,21 � 10,35 81,89 � 11,8 75,15 � 13,03 

Nonlinear SVM (RBF Kernel) PhysioNet 58,67 � 12,53 58,66 � 14,28 62 � 13,36 65,33 � 17,91 59,67 � 15,21 60 � 14,82 
BCI Comp. 74,73 � 5,47 74,1 � 4,85 78,1 � 7,85 80 � 6,69 77,89 � 10,26 70,94 � 8,1  
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imagination), we observed that all synchronization measures consis
tently captured the left fronto central-central, left central-centro parietal 
and left fronto central-centro parietal connectivity. By taking both re
sults into consideration, mutual information method can better unveil 
motor imagery task related connectivity patterns than the other syn
chronization methods. These electrode couplings result for each dataset 
shows that, for both datasets, mutual information can better unveil 
motor imagery task related connectivity patterns than the other syn
chronization measures. 

For the right/left fist motor imagery task, mutual information 
captured the synchronization patterns that reflect the functional con
nectivity of left premotor area-right premotor area, supplementary 
motor area-left sensorimotor cortex, right premotor area-right sensori
motor cortex and right-left parietal regions. In the literature, these brain 
regions have already been identified to be strongly associated with hand 
motor imagery tasks. While the right and left premotor areas are 
responsible for the integration and processing of information collected 
from other regions of the brain [125,126], sensorimotor cortex plays a 
role in spatial control and motor planning [127]. In Ref. [128], authors 
found that both sensorimotor cortices and premotor area are simulta
neously activated with supplementary motor area during hand motor 
imagery activity. In a later study, the same group identified connectivity 
patterns between similar regions for right- and left-hand motor imagery 
task [129]. 

Cognitive, sensory and motor functions require interconnectivity of 
anatomically as well as functionally different regions of the brain [130]. 
Basically, these regions reciprocally process and exchange neural in
formation for each specific brain activity [131]. So far, in the literature, 
a great deal of brain activity recognition/characterization studies 
analyzed and used power-based features of electrophysiological data 
obtained from focal cortical activity of the brain with notable success 
[31,32,123,124]. However, as also depicted in many other studies, a 
complete assessment of brain function requires a detailed evaluation of 
the interaction between electrophysiological data collected from distinct 
regions of the brain [57,65,132]. Indeed, this perspective forms the 
main premise of the current study. 

Yet, for a more concrete comparison of CSP-based power features 
and synchronization-based features, it may be helpful to recognize that, 
CSP essentially calculates the power of the latent channels obtained as 
weighted linear combinations of actual EEG signals. In case where 
synchronization occurs through concurrent power increase or decrease 
that is preserved through the prescribed linear weighting by the CSP, the 
resulting power features can be expected to be useful for task recogni
tion. However, there is no clear indication on how synchrony manifests 
between different brain regions during tasks of interest. This, in fact, was 
the main reason for evaluating a battery of potential synchronization 
measures in a cognitive task recognition scenario in this manuscript. 
Consequently, CSP-based power features may be insensitive to syn
chronization modes that do not survive weighted linear average over a 
large number of brain regions, that may also explain their apparent 
weakness in the recognition problem considered here. 

For right fist/left fist motor imagery recognition, performances 

obtained from a priori selected channel pairs show that the channel pairs 
proposed by Krusienski et al. [61] generally achieves better accuracy 
than the other ones. From a biophysical point of view, these channel 
pairs constitute inter- and intra-hemispheric connections and collect 
brain activity from premotor, primary motor, sensorimotor and 
central-parietal areas. In the literature, these brain areas are listed 
among the critical brain for regions and constitute the functional 
network related with the right/left hand/finger motor imagination tasks 
[125]. In line with the previous studies that examine the intra- and 
inter-hemispheric interactions, stated that these electrodes mainly 
manifest the electrical activity of parietal, central and premotor regions 
during right and left hand motor imagination [129,133]. A study 
accomplished by L. A. Wheaton et al. further stated that the increase of 
synchronization between premotor and parietal cortices are the signa
ture of motor preparation task for praxis hand movements [134]. Since 
right/left fist imagination is not a fully praxis movement, it is reasonable 
to expect that these channel pairs demonstrate better recognition per
formance than the other ones. Another study that evaluates the func
tional networks during finger tapping imagination identified eight 
connections that are mainly observed between premotor and motor 
cortices [125]. Yet, the results in Tables 3 and 4 show that automatically 
selected channel pairs outperform these a priori determined channel 
pairs for imaginary motor activity recognition. Clearly, the issue of 
which channel pairs are useful for which activity is to be elucidated 
further. One possible avenue of research may be to evaluate which 
channel pairs are often selected across the subjects of a large cohort. The 
current study forms the initial stage of a funded project that addresses a 
connectivity-based brain activity characterization. In the later stage of 
this project, we are currently seeking to capture the synchronization 
patterns that emerge in a short time window during the cognitive task in 
different time lags as well as in different latency values. This, however, 
entails a 3-parameter optimization with additional algorithmic and 
computational challenges and is under preparation for a follow-up 
paper. 

5. Conclusions 

In this study, we applied several synchronization measures in a novel 
cognitive task recognition framework. We characterized the brain ac
tivity by means of calculating the synchronization between channels at 
task-specific time lags. To this end, we applied several synchronization 
measures and calculated the characteristic time lags (task specific time 
lags) associated with different cognitive tasks: mutual information, 
correntropy, phase locking value, cross-correlation, nonlinear interde
pendence and cosine-based similarity. In the training phase, the task- 
specific time lags were obtained and used for constructing training 
feature vectors. These lags maximized the average synchronization for 
their respective channel pairs and cognitive task types in the training set. 
In the test phase, we calculated the synchronization values at the same 
task-specific time lags calculated in the training phase and constructed 
the test feature vectors. Due to the high dimensionality of the feature 
vectors, we carried out a feature selection using Fisher ratio along with a 

Table 10 
The 5 most frequent electrode pairs obtained for both PhysioNet and BCI Competition datasets.   

Cosine-based Cross Correlation Nonlinear Int. Correntropy Mutual Information PLV 

PhysioNet Dataset Fc3-P5 C6-AF3 C4-Po4 Fcz-Ft8 F5-F8 Tp8-Po7 
Fc6-Ft7 Cp3-Fp1 C6-Po4 F7-O1 Tp8-Po3 P5-P8 
C1-P7 Cp6-Po3 Cp5-O2 Fc1-Ft8 P8-Po7 P1-P8 
Cp5-P2 P5-P8 Cp1-Po4 Fcz-F8 Fc4-Tp8 Fc3-Ft7 
Cp6-Iz P3-P8 Ft8-Po4 Fcz-Ft7 C5-F1 C4-P8 

BCI Competition-III Dataset Fc1-C1 Fc1-C1 Fc1-C1 Fc1-C1 Fc1-C1 CFC1-CCP3 
F3-CCP5 Fc1-CCP3 CFC1-Cp3 CFC1-Cp3 Fc1-CCP3 Cz-CCP3 
F1-CCP3 CFC1-CCP3 F7-CCP5 Cz-CP3 CFC1-CCP3 Fc1-CCP3 
F1-CCP5 Cz-CCP3 F5-CCP5 F1-CCP5 Cz-CCP3 Fcz-CCP3 
F1-Cp5 Cz-Cp1 FFC7-CCP5 F1-CCP3 Cz-Cp1 FFC1-CCP3  
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priori suggested channel pairs in the literature. For recognition, we used 
a FLD classifier. The results in Tables 3 and 4 show that the recognition 
rates were below the minimum reliable communication rate (i.e. %70) 
for PhysioNet dataset [135]. However, for the BCI Competition-III 
dataset, the average performance varied between %69-%76. 

Performance evaluation was carried out using a realistic cross vali
dation scheme that uses a chronological partitioning of the data into 
training and testing sets. In classification results on the PhysioNet Motor 
Movement/Imagery Dataset, connectivity-based framework evaluated 
here outperformed a CSP-based benchmark scheme. Using BCI Compe
tition-III dataset, it achieved a slightly lower performance than the CSP 
method. These results indicate that task-specific inter-regional lagged 
synchronization between potentially remote brain regions were used 
effectively to discriminate between different motor imagery tasks and is 
important to estimate the directions of information flow during cogni
tive tasks. 

For future studies, the brain connectivity methodology adopted in 
this work can be useful in a real-time asynchronous cognitive task 
identification framework. Since the synchronous type methods calculate 
relevant features in a pre-determined time window, the asynchronous 
version needs to monitor the changes in brain activity in flowing EEG 
data to capture the status change as quickly as possible. In addition, 
synchronization profiles among different channel pairs offer the poten
tial to discriminate between a great number of sensory, cognitive or 
motor tasks, as the number of pair sets increase geometrically with the 
number of EEG channels. Consequently, with further improvements, a 
brain connectivity-based approach can lead to a reliable, robust analysis 
method for online BCI applications. 

Conflicts of interest 

None Declared. 

Acknowledgement 

This study was supported by a grant awarded to Dr. Bilge KARAÇALI 
by The Scientific and Technological Research Council of Turkey 
(TUBITAK) with grant number 117E784. 

References 

[1] C. Güdücü, B.O. Olcay, L. Sch€afer, M. Aziz, V.A. Schriever, M. €Ozg€oren, 
T. Hummel, Separating normosmic and anosmic patients based on entropy 
evaluation of olfactory event-related potentials, Brain Res. 1708 (2019) 78–83, 
https://doi.org/10.1016/j.brainres.2018.12.012. 

[2] B. Koley, D. Dey, An ensemble system for automatic sleep stage classification 
using single channel EEG signal, Comput. Biol. Med. 42 (2012) 1186–1195, 
https://doi.org/10.1016/j.compbiomed.2012.09.012. 

[3] A. Asif, M. Majid, S.M. Anwar, Human stress classification using EEG signals in 
response to music tracks, Comput. Biol. Med. 107 (2019) 182–196, https://doi. 
org/10.1016/j.compbiomed.2019.02.015. 

[4] J.R. Wolpaw, N. Birbaumer, D.J. McFarland, G. Pfurtscheller, T.M. Vaughan, 
Brain–computer interfaces for communication and control, Clin. Neurophysiol. 
113 (2002) 767–791. https://doi.org/10.1016/S1388-2457(02)00057-3. 

[5] R.A. Ramadan, A.V. Vasilakos, Brain computer interface: control signals review, 
Neurocomputing 223 (2017) 26–44, https://doi.org/10.1016/j. 
neucom.2016.10.024. 

[6] U. Chaudhary, N. Birbaumer, A. Ramos-Murguialday, Brain-computer interfaces 
for communication and rehabilitation, Nat. Rev. Neurol. 12 (2016) 513–525, 
https://doi.org/10.1038/nrneurol.2016.113. 

[7] L.A. Farwell, E. Donchin, Talking off the top of your head: toward a mental 
prosthesis utilizing event-related brain potentials, Electroencephalogr. Clin. 
Neurophysiol. 70 (1988) 510–523, https://doi.org/10.1016/0013-4694(88) 
90149-6. 

[8] C.C. Postelnicu, D. Talaba, P300-based brain-neuronal computer interaction for 
spelling applications, IEEE Trans. Biomed. Eng. 60 (2013) 534–543, https://doi. 
org/10.1109/TBME.2012.2228645. 

[9] H. Yuan, B. He, Brain-computer interfaces using sensorimotor rhythms: current 
state and future perspectives, IEEE Trans. Biomed. Eng. 61 (2014) 1425–1435, 
https://doi.org/10.1109/TBME.2014.2312397. 

[10] L. Bai, T. Yu, Y. Li, A brain computer interface-based explorer, J. Neurosci. 
Methods 244 (2015) 2–7, https://doi.org/10.1016/j.jneumeth.2014.06.015. 

[11] T. Yu, Y. Li, J. Long, Z. Gu, Surfing the internet with a BCI mouse, J. Neural Eng. 9 
(2012), https://doi.org/10.1088/1741-2560/9/3/036012. 

[12] S. Dodia, D.R. Edla, A. Bablani, D. Ramesh, V. Kuppili, An efficient EEG based 
deceit identification test using wavelet packet transform and linear discriminant 
analysis, J. Neurosci. Methods 314 (2019) 31–40, https://doi.org/10.1016/j. 
jneumeth.2019.01.007. 

[13] J.S. Kang, U. Park, V. Gonuguntla, K.C. Veluvolu, M. Lee, Human implicit intent 
recognition based on the phase synchrony of EEG signals, Pattern Recognit. Lett. 
66 (2015) 144–152, https://doi.org/10.1016/j.patrec.2015.06.013. 

[14] H.G. Jo, J.Y. Park, C.K. Lee, S.K. An, S.K. Yoo, Genetic fuzzy classifier for sleep 
stage identification, Comput. Biol. Med. 40 (2010) 629–634, https://doi.org/ 
10.1016/j.compbiomed.2010.04.007. 

[15] X.S. Zhang, R.J. Roy, E.W. Jensen, EEG complexity as a measure of depth of 
anesthesia for patients, IEEE Trans. Biomed. Eng. 48 (2001) 1424–1433, https:// 
doi.org/10.1109/10.966601. 

[16] R. San-Segundo, M. Gil-Martín, L.F. D’Haro-Enríquez, J.M. Pardo, Classification 
of epileptic EEG recordings using signal transforms and convolutional neural 
networks, Comput. Biol. Med. 109 (2019) 148–158, https://doi.org/10.1016/j. 
compbiomed.2019.04.031. 

[17] P. Mirowski, D. Madhavan, Y. LeCun, R. Kuzniecky, Classification of patterns of 
EEG synchronization for seizure prediction, Clin. Neurophysiol. 120 (2009) 
1927–1940, https://doi.org/10.1016/j.clinph.2009.09.002. 

[18] R. Hussein, H. Palangi, R.K. Ward, Z.J. Wang, Optimized deep neural network 
architecture for robust detection of epileptic seizures using EEG signals, Clin. 
Neurophysiol. 130 (2019) 25–37, https://doi.org/10.1016/j.clinph.2018.10.010. 

[19] S. Dutta, M. Singh, A. Kumar, Classification of non-motor cognitive task in EEG 
based brain-computer interface using phase space features in multivariate 
empirical mode decomposition domain, Biomed. Signal Process. Control 39 
(2018) 378–389, https://doi.org/10.1016/j.bspc.2017.08.004. 

[20] M. Besserve, M. Philippe, G. Florence, F. Laurent, L. Garnero, J. Martinerie, 
Prediction of performance level during a cognitive task from ongoing EEG 
oscillatory activities, Clin. Neurophysiol. 119 (2008) 897–908, https://doi.org/ 
10.1016/j.clinph.2007.12.003. 

[21] F. Lotte, M. Congedo, A. L�ecuyer, F. Lamarche, B. Arnaldi, A review of 
classification algorithms for EEG-based brain-computer interfaces, J. Neural Eng. 
4 (2007), https://doi.org/10.1088/1741-2560/4/2/R01. 

[22] T. Carlson, L. Tonin, S. Perdikis, R. Leeb, J.D.R. Millan, A hybrid BCI for enhanced 
control of a telepresence robot, in: Proc. Annu. Int. Conf. IEEE Eng. Med. Biol. 
Soc. EMBS, Institute of Electrical and Electronics Engineers Inc., 2013, 
pp. 3097–3100, https://doi.org/10.1109/EMBC.2013.6610196. 

[23] K. Lafleur, K. Cassady, A. Doud, K. Shades, E. Rogin, B. He, Quadcopter control in 
three-dimensional space using a noninvasive motor imagery-based brain- 
computer interface, J. Neural Eng. 10 (2013), https://doi.org/10.1088/1741- 
2560/10/4/046003. 

[24] A.J. Doud, J.P. Lucas, M.T. Pisansky, B. He, Continuous three-dimensional control 
of a virtual helicopter using a motor imagery based Brain-Computer interface, 
PLoS One 6 (2011), https://doi.org/10.1371/journal.pone.0026322. 

[25] M. Pregenzer, G. Pfurtscheller, Frequency component selection for an EEG-based 
brain to computer interface, IEEE Trans. Rehabil. Eng. 7 (1999) 413–419, https:// 
doi.org/10.1109/86.808944. 

[26] D.J. McFarland, J.R. Wolpaw, Sensorimotor rhythm-based brain-computer 
interface (BCI): model order selection for autoregressive spectral analysis, 
J. Neural Eng. 5 (2008) 155–162, https://doi.org/10.1088/1741-2560/5/2/006. 

[27] A. Schloegl, K. Lugger, G. Pfurtscheller, Using adaptive autoregressive parameters 
for a brain-computer-interface experiment, in: Annu. Int. Conf. IEEE Eng. Med. 
Biol. - Proc, 4, 1997, pp. 1533–1535, https://doi.org/10.1109/ 
IEMBS.1997.757002. 

[28] N. Firat Ince, S. Arica, A. Tewfik, Classification of single trial motor imagery EEG 
recordings with subject adapted non-dyadic arbitrary time-frequency tilings, 
J. Neural Eng. 3 (2006) 235–244, https://doi.org/10.1088/1741-2560/3/3/006. 

[29] N.F. Ince, F. Goksu, A.H. Tewfik, S. Arica, Adapting subject specific motor 
imagery EEG patterns in space-time-frequency for a brain computer interface, 
Biomed. Signal Process. Control 4 (2009) 236–246, https://doi.org/10.1016/j. 
bspc.2009.03.005. 

[30] L. Qin, B. He, A wavelet-based time-frequency analysis approach for classification 
of motor imagery for brain-computer interface applications, J. Neural Eng. 2 
(2005) 65–72, https://doi.org/10.1088/1741-2560/2/4/001. 

[31] H. Ramoser, J. Müller-Gerking, G. Pfurtscheller, Optimal spatial filtering of single 
trial EEG during imagined hand movement, IEEE Trans. Rehabil. Eng. 8 (2000) 
441–446, https://doi.org/10.1109/86.895946. 

[32] F. Lotte, C. Guan, Regularizing common spatial patterns to improve BCI designs: 
unified theory and new algorithms, IEEE Trans. Biomed. Eng. 58 (2011) 355–362, 
https://doi.org/10.1109/TBME.2010.2082539. 

[33] S.H. Park, D. Lee, S.G. Lee, Filter bank regularized common spatial pattern 
ensemble for small sample motor imagery classification, IEEE Trans. Neural Syst. 
Rehabil. Eng. 26 (2018) 498–505, https://doi.org/10.1109/ 
TNSRE.2017.2757519. 

[34] A. Tzovara, M.M. Murray, G. Plomp, M.H. Herzog, C.M. Michel, M. De Lucia, 
Decoding stimulus-related information from single-trial EEG responses based on 
voltage topographies, Pattern Recognit. 45 (2012) 2109–2122, https://doi.org/ 
10.1016/j.patcog.2011.04.007. 

[35] C. Vidaurre, N. Kr€amer, B. Blankertz, A. Schl€ogl, Time domain parameters as a 
feature for EEG-based brain-computer interfaces, Neural Netw. 22 (2009) 
1313–1319, https://doi.org/10.1016/j.neunet.2009.07.020. 

B.O. Olcay and B. Karaçalı                                                                                                                                                                                                                   

https://doi.org/10.1016/j.brainres.2018.12.012
https://doi.org/10.1016/j.compbiomed.2012.09.012
https://doi.org/10.1016/j.compbiomed.2019.02.015
https://doi.org/10.1016/j.compbiomed.2019.02.015
https://doi.org/10.1016/S1388-2457(02)00057-3
https://doi.org/10.1016/j.neucom.2016.10.024
https://doi.org/10.1016/j.neucom.2016.10.024
https://doi.org/10.1038/nrneurol.2016.113
https://doi.org/10.1016/0013-4694(88)90149-6
https://doi.org/10.1016/0013-4694(88)90149-6
https://doi.org/10.1109/TBME.2012.2228645
https://doi.org/10.1109/TBME.2012.2228645
https://doi.org/10.1109/TBME.2014.2312397
https://doi.org/10.1016/j.jneumeth.2014.06.015
https://doi.org/10.1088/1741-2560/9/3/036012
https://doi.org/10.1016/j.jneumeth.2019.01.007
https://doi.org/10.1016/j.jneumeth.2019.01.007
https://doi.org/10.1016/j.patrec.2015.06.013
https://doi.org/10.1016/j.compbiomed.2010.04.007
https://doi.org/10.1016/j.compbiomed.2010.04.007
https://doi.org/10.1109/10.966601
https://doi.org/10.1109/10.966601
https://doi.org/10.1016/j.compbiomed.2019.04.031
https://doi.org/10.1016/j.compbiomed.2019.04.031
https://doi.org/10.1016/j.clinph.2009.09.002
https://doi.org/10.1016/j.clinph.2018.10.010
https://doi.org/10.1016/j.bspc.2017.08.004
https://doi.org/10.1016/j.clinph.2007.12.003
https://doi.org/10.1016/j.clinph.2007.12.003
https://doi.org/10.1088/1741-2560/4/2/R01
https://doi.org/10.1109/EMBC.2013.6610196
https://doi.org/10.1088/1741-2560/10/4/046003
https://doi.org/10.1088/1741-2560/10/4/046003
https://doi.org/10.1371/journal.pone.0026322
https://doi.org/10.1109/86.808944
https://doi.org/10.1109/86.808944
https://doi.org/10.1088/1741-2560/5/2/006
https://doi.org/10.1109/IEMBS.1997.757002
https://doi.org/10.1109/IEMBS.1997.757002
https://doi.org/10.1088/1741-2560/3/3/006
https://doi.org/10.1016/j.bspc.2009.03.005
https://doi.org/10.1016/j.bspc.2009.03.005
https://doi.org/10.1088/1741-2560/2/4/001
https://doi.org/10.1109/86.895946
https://doi.org/10.1109/TBME.2010.2082539
https://doi.org/10.1109/TNSRE.2017.2757519
https://doi.org/10.1109/TNSRE.2017.2757519
https://doi.org/10.1016/j.patcog.2011.04.007
https://doi.org/10.1016/j.patcog.2011.04.007
https://doi.org/10.1016/j.neunet.2009.07.020


Computers in Biology and Medicine 114 (2019) 103441

12

[36] A.M. Bastos, J.-M. Schoffelen, A tutorial review of functional connectivity 
analysis methods and their interpretational pitfalls, Front. Syst. Neurosci. 9 
(2016) 175. 

[37] D. Meunier, R. Lambiotte, E.T. Bullmore, Modular and hierarchically modular 
organization of brain networks, Front. Neurosci. 4 (2010), https://doi.org/ 
10.3389/fnins.2010.00200. 

[38] C. Zhou, L. Zemanov�a, G. Zamora, C.C. Hilgetag, J. Kurths, Hierarchical 
organization unveiled by functional connectivity in complex brain networks, 
Phys. Rev. Lett. 97 (2006), https://doi.org/10.1103/PhysRevLett.97.238103. 

[39] A.A. Fingelkurts, A.A. Fingelkurts, S. K€ahk€onen, Functional connectivity in the 
brain - is it an elusive concept? Neurosci. Biobehav. Rev. 28 (2005) 827–836, 
https://doi.org/10.1016/j.neubiorev.2004.10.009. 

[40] C.J. Stam, E.C.W. van Straaten, The organization of physiological brain networks, 
Clin. Neurophysiol. 123 (2012) 1067–1087, https://doi.org/10.1016/j. 
clinph.2012.01.011. 

[41] S. Sargolzaei, M. Cabrerizo, M. Goryawala, A.S. Eddin, M. Adjouadi, Scalp EEG 
brain functional connectivity networks in pediatric epilepsy, Comput. Biol. Med. 
56 (2015) 158–166, https://doi.org/10.1016/j.compbiomed.2014.10.018. 

[42] L. Faes, D. Marinazzo, G. Nollo, A. Porta, An information-theoretic framework to 
map the spatiotemporal dynamics of the scalp electroencephalogram, IEEE Trans. 
Biomed. Eng. 63 (2016) 2488–2496, https://doi.org/10.1109/ 
TBME.2016.2569823. 

[43] J. Jeong, J.C. Gore, B.S. Peterson, Mutual information analysis of the EEG in 
patients with Alzheimer’s disease, Clin. Neurophysiol. 112 (2001) 827–835, 
https://doi.org/10.1016/S1388-2457(01)00513-2. 

[44] E. Olejarczyk, L. Marzetti, V. Pizzella, F. Zappasodi, Comparison of connectivity 
analyses for resting state EEG data, J. Neural Eng. 14 (2017), https://doi.org/ 
10.1088/1741-2552/aa6401. 

[45] B.O. Olcay, B. Karacali, M. Ozgoren, C. Guducu, Brain activity characterization by 
entropic clustering of EEG signals, in: Institute of Electrical and Electronics 
Engineers (IEEE), 2017, pp. 1–4, https://doi.org/10.1109/siu.2017.7960503. 

[46] A. Wilmer, M. de Lussanet, M. Lappe, Time-delayed mutual information of the 
phase as a measure of functional connectivity, PLoS One 7 (2012), https://doi. 
org/10.1371/journal.pone.0044633. 

[47] M. Wibral, N. Pampu, V. Priesemann, F. Siebenhühner, H. Seiwert, M. Lindner, J. 
T. Lizier, R. Vicente, Measuring information-transfer delays, PLoS One 8 (2013), 
e55809. https://doi.org/10.1371/journal.pone.0055809. 

[48] M. Lobier, F. Siebenhühner, S. Palva, J.M. Palva, Phase transfer entropy: a novel 
phase-based measure for directed connectivity in networks coupled by oscillatory 
interactions, Neuroimage 85 (2014) 853–872, https://doi.org/10.1016/j. 
neuroimage.2013.08.056. 

[49] X. Wan, B. Crüts, H.J. Jensen, The causal inference of cortical neural networks 
during music improvisations, PLoS One 9 (2014), https://doi.org/10.1371/ 
journal.pone.0112776. 

[50] J.W. Xu, H. Bakardjian, A. Cichocki, J.C. Principe, A new nonlinear similarity 
measure for multichannel biological signals, in: IEEE Int. Conf. Neural Networks - 
Conf. Proc, 2007, pp. 2046–2051, https://doi.org/10.1109/ 
IJCNN.2007.4371273. 

[51] L. Li, I.M. Park, S. Seth, J.C. Sanchez, J.C. Príncipe, Functional connectivity 
dynamics among cortical neurons: a dependence analysis, IEEE Trans. Neural 
Syst. Rehabil. Eng. 20 (2012) 18–30, https://doi.org/10.1109/ 
TNSRE.2011.2176749. 

[52] B. Fadlallah, S. Seth, A. Keil, J. Principe, Quantifying cognitive state from EEG 
using dependence measures, IEEE Trans. Biomed. Eng. 59 (2012) 2773–2781, 
https://doi.org/10.1109/TBME.2012.2210283. 

[53] S. Aviyente, E.M. Bernat, W.S. Evans, S.R. Sponheim, A phase synchrony measure 
for quantifying dynamic functional integration in the brain, Hum. Brain Mapp. 32 
(2011) 80–93, https://doi.org/10.1002/hbm.21000. 

[54] C.J. Stam, G. Nolte, A. Daffertshofer, Phase lag index: assessment of functional 
connectivity from multi channel EEG and MEG with diminished bias from 
common sources, Hum. Brain Mapp. 28 (2007) 1178–1193, https://doi.org/ 
10.1002/hbm.20346. 

[55] S. Khanmohammadi, An improved synchronization likelihood method for 
quantifying neuronal synchrony, Comput. Biol. Med. 91 (2017) 80–95, https:// 
doi.org/10.1016/j.compbiomed.2017.09.022. 

[56] H. Bakhshayesh, S.P. Fitzgibbon, A.S. Janani, T.S. Grummett, K.J. Pope, Detecting 
synchrony in EEG: a comparative study of functional connectivity measures, 
Comput. Biol. Med. 105 (2019) 1–15, https://doi.org/10.1016/j. 
compbiomed.2018.12.005. 

[57] V. Sakkalis, Review of advanced techniques for the estimation of brain 
connectivity measured with EEG/MEG, Comput. Biol. Med. 41 (2011) 
1110–1117, https://doi.org/10.1016/j.compbiomed.2011.06.020. 

[58] E. Pereda, R.Q. Quiroga, J. Bhattacharya, Nonlinear multivariate analysis of 
neurophysiological signals, Prog. Neurobiol. 77 (2005) 1–37, https://doi.org/ 
10.1016/j.pneurobio.2005.10.003. 

[59] J. Dauwels, F. Vialatte, T. Musha, A. Cichocki, A comparative study of synchrony 
measures for the early diagnosis of Alzheimer’s disease based on EEG, 
Neuroimage 49 (2010) 668–693, https://doi.org/10.1016/j. 
neuroimage.2009.06.056. 

[60] J.D. Bonita, L.C.C. Ambolode, B.M. Rosenberg, C.J. Cellucci, T.A.A. Watanabe, P. 
E. Rapp, A.M. Albano, Time domain measures of inter-channel EEG correlations: a 
comparison of linear, nonparametric and nonlinear measures, Cogn. Neurodyn. 8 
(2014) 1–15, https://doi.org/10.1007/s11571-013-9267-8. 

[61] D.J. Krusienski, D.J. McFarland, J.R. Wolpaw, Value of amplitude, phase, and 
coherence features for a sensorimotor rhythm-based brain-computer interface, 

Brain Res. Bull. 87 (2012) 130–134, https://doi.org/10.1016/j. 
brainresbull.2011.09.019. 

[62] M. Hamedi, S.H. Salleh, A.M. Noor, Electroencephalographic motor imagery 
brain connectivity analysis for BCI: a review, Neural Comput. 28 (2016) 
999–1041, https://doi.org/10.1162/NECO_a_00838. 

[63] I. Daly, S.J. Nasuto, K. Warwick, Brain computer interface control via functional 
connectivity dynamics, Pattern Recognit. 45 (2012) 2123–2136, https://doi.org/ 
10.1016/j.patcog.2011.04.034. 

[64] V. Gonuguntla, Y. Wang, K.C. Veluvolu, Event-related functional network 
identification: application to EEG classification, IEEE J. Sel. Top. Signal Process. 
10 (2016) 1284–1294, https://doi.org/10.1109/JSTSP.2016.2602007. 

[65] D. La Rocca, P. Campisi, B. Vegso, P. Cserti, G. Kozmann, F. Babiloni, F. De Vico 
Fallani, Human brain distinctiveness based on EEG spectral coherence 
connectivity, IEEE Trans. Biomed. Eng. 61 (2014) 2406–2412, https://doi.org/ 
10.1109/TBME.2014.2317881. 

[66] S. Siuly, Y. Li, Improving the separability of motor imagery EEG signals using a 
cross correlation-based least square support vector machine for brain-computer 
interface, IEEE Trans. Neural Syst. Rehabil. Eng. 20 (2012) 526–538, https://doi. 
org/10.1109/TNSRE.2012.2184838. 

[67] B.R. Hermanto, T.R. Mengko, A. Indrayanto, A.S. Prihatmanto, Brain signal 
reference concept using cross correlation based for brain computer interface, in: 
Proc. 2013 3rd Int. Conf. Instrumentation, Commun. Inf. Technol., Biomed. Eng. 
Sci. Technol. Improv. Heal. Safety, Environ., ICICI-BME 2013, IEEE Computer 
Society, 2013, pp. 388–391, https://doi.org/10.1109/ICICI-BME.2013.6698531. 

[68] C.G. Rong, D. Xiaoning, From Chaos to Order: Methodologies, Perspectives and 
Applications, World Scientific, 1998. 

[69] E.M. Shahverdiev, S. Sivaprakasam, K.A. Shore, Lag synchronization in time- 
delayed systems, Phys. Lett. Sect. A Gen. At. Solid State Phys. 292 (2002) 
320–324, https://doi.org/10.1016/S0375-9601(01)00824-6. 

[70] O. Sporns, G. Tononi, G.M. Edelman, Connectivity and complexity: the 
relationship between neuroanatomy and brain dynamics, Neural Netw. 13 (2000) 
909–922, https://doi.org/10.1016/S0893-6080(00)00053-8. 

[71] M. Wibral, B. Rahm, M. Rieder, M. Lindner, R. Vicente, J. Kaiser, Transfer entropy 
in magnetoencephalographic data: quantifying information flow in cortical and 
cerebellar networks, Prog. Biophys. Mol. Biol. 105 (2011) 80–97, https://doi.org/ 
10.1016/j.pbiomolbio.2010.11.006. 

[72] N.C. Pampu, R. Vicente, R.C. Muresan, V. Priesemann, F. Siebenhuhner, 
M. Wibral, Transfer entropy as a tool for reconstructing interaction delays in 
neural signals, in: ISSCS 2013 - Int. Symp. Signals, Circuits Syst, 2013, https:// 
doi.org/10.1109/ISSCS.2013.6651210. 

[73] S.H. Na, S.H. Jin, S.Y. Kim, B.J. Ham, EEG in schizophrenic patients: mutual 
information analysis, Clin. Neurophysiol. 113 (2002) 1954–1960, https://doi. 
org/10.1016/S1388-2457(02)00197-9. 

[74] J. Gotman, Measurement of small time differences between EEG channels: 
method and application to epileptic seizure propagation, Electroencephalogr. 
Clin. Neurophysiol. 56 (1983) 501–514, https://doi.org/10.1016/0013-4694(83) 
90235-3. 

[75] P.Y. Ktonas, R. Mallart, Estimation of time delay between EEG signals for 
epileptic focus localization: statistical error considerations, Electroencephalogr. 
Clin. Neurophysiol. 78 (1991) 105–110, https://doi.org/10.1016/0013-4694(91) 
90109-H. 

[76] R. van Bergen, A Discrete Mutual Information Estimator of Continuous Signals, 
1986. 

[77] P.H. Boeijinga, F.H. Lopes da Silva, A new method to estimate time delays 
between EEG signals applied to beta activity of the olfactory cortical areas, 
Electroencephalogr. Clin. Neurophysiol. 73 (1989) 198–205, https://doi.org/ 
10.1016/0013-4694(89)90120-X. 

[78] A. Adhikari, T. Sigurdsson, M.A. Topiwala, J.A. Gordon, Cross-correlation of 
instantaneous amplitudes of field potential oscillations: a straightforward method 
to estimate the directionality and lag between brain areas, J. Neurosci. Methods 
191 (2010) 191–200, https://doi.org/10.1016/j.jneumeth.2010.06.019. 

[79] B. Blankertz, K.R. Müller, D.J. Krusienski, G. Schalk, J.R. Wolpaw, A. Schl€ogl, 
G. Pfurtscheller, J.D.R. Mill�an, M. Schr€oder, N. Birbaumer, The BCI competition 
III: validating alternative approaches to actual BCI problems, IEEE Trans. Neural 
Syst. Rehabil. Eng. 14 (2006) 153–159, https://doi.org/10.1109/ 
TNSRE.2006.875642. 

[80] G. Dornhege, B. Blankertz, G. Curio, K.R. Müller, Boosting bit rates in noninvasive 
EEG single-trial classifications by feature combination and multiclass paradigms, 
IEEE Trans. Biomed. Eng. 51 (2004) 993–1002, https://doi.org/10.1109/ 
TBME.2004.827088. 

[81] A.L. Goldberger, L.A. Amaral, L. Glass, J.M. Hausdorff, P.C. Ivanov, R.G. Mark, J. 
E. Mietus, G.B. Moody, C.K. Peng, H.E. Stanley, PhysioBank, PhysioToolkit, and 
PhysioNet: components of a new research resource for complex physiologic 
signals, Circulation 101 (2000). https://www.ahajournals.org/doi/abs/10.1161 
/circ.101.23.e215. (Accessed 13 September 2019). 

[82] G. Schalk, D.J. McFarland, T. Hinterberger, N. Birbaumer, J.R. Wolpaw, BCI2000: 
a general-purpose brain-computer interface (BCI) system, IEEE Trans. Biomed. 
Eng. 51 (2004) 1034–1043, https://doi.org/10.1109/TBME.2004.827072. 

[83] F. Lotte, Study of Electroencephalographic signal processing and classification 
techniques towards the use of Brain-Computer interfaces in virtual reality 
applications. https://tel.archives-ouvertes.fr/tel-00356346v2, 2008. (Accessed 
13 September 2019). 

[84] D.J. McFarland, L.M. McCane, S.V. David, J.R. Wolpaw, Spatial filter selection for 
EEG-based communication, Electroencephalogr. Clin. Neurophysiol. 103 (1997) 
386–394, https://doi.org/10.1016/S0013-4694(97)00022-2. 

B.O. Olcay and B. Karaçalı                                                                                                                                                                                                                   

http://refhub.elsevier.com/S0010-4825(19)30318-X/sref36
http://refhub.elsevier.com/S0010-4825(19)30318-X/sref36
http://refhub.elsevier.com/S0010-4825(19)30318-X/sref36
https://doi.org/10.3389/fnins.2010.00200
https://doi.org/10.3389/fnins.2010.00200
https://doi.org/10.1103/PhysRevLett.97.238103
https://doi.org/10.1016/j.neubiorev.2004.10.009
https://doi.org/10.1016/j.clinph.2012.01.011
https://doi.org/10.1016/j.clinph.2012.01.011
https://doi.org/10.1016/j.compbiomed.2014.10.018
https://doi.org/10.1109/TBME.2016.2569823
https://doi.org/10.1109/TBME.2016.2569823
https://doi.org/10.1016/S1388-2457(01)00513-2
https://doi.org/10.1088/1741-2552/aa6401
https://doi.org/10.1088/1741-2552/aa6401
https://doi.org/10.1109/siu.2017.7960503
https://doi.org/10.1371/journal.pone.0044633
https://doi.org/10.1371/journal.pone.0044633
https://doi.org/10.1371/journal.pone.0055809
https://doi.org/10.1016/j.neuroimage.2013.08.056
https://doi.org/10.1016/j.neuroimage.2013.08.056
https://doi.org/10.1371/journal.pone.0112776
https://doi.org/10.1371/journal.pone.0112776
https://doi.org/10.1109/IJCNN.2007.4371273
https://doi.org/10.1109/IJCNN.2007.4371273
https://doi.org/10.1109/TNSRE.2011.2176749
https://doi.org/10.1109/TNSRE.2011.2176749
https://doi.org/10.1109/TBME.2012.2210283
https://doi.org/10.1002/hbm.21000
https://doi.org/10.1002/hbm.20346
https://doi.org/10.1002/hbm.20346
https://doi.org/10.1016/j.compbiomed.2017.09.022
https://doi.org/10.1016/j.compbiomed.2017.09.022
https://doi.org/10.1016/j.compbiomed.2018.12.005
https://doi.org/10.1016/j.compbiomed.2018.12.005
https://doi.org/10.1016/j.compbiomed.2011.06.020
https://doi.org/10.1016/j.pneurobio.2005.10.003
https://doi.org/10.1016/j.pneurobio.2005.10.003
https://doi.org/10.1016/j.neuroimage.2009.06.056
https://doi.org/10.1016/j.neuroimage.2009.06.056
https://doi.org/10.1007/s11571-013-9267-8
https://doi.org/10.1016/j.brainresbull.2011.09.019
https://doi.org/10.1016/j.brainresbull.2011.09.019
https://doi.org/10.1162/NECO_a_00838
https://doi.org/10.1016/j.patcog.2011.04.034
https://doi.org/10.1016/j.patcog.2011.04.034
https://doi.org/10.1109/JSTSP.2016.2602007
https://doi.org/10.1109/TBME.2014.2317881
https://doi.org/10.1109/TBME.2014.2317881
https://doi.org/10.1109/TNSRE.2012.2184838
https://doi.org/10.1109/TNSRE.2012.2184838
https://doi.org/10.1109/ICICI-BME.2013.6698531
http://refhub.elsevier.com/S0010-4825(19)30318-X/sref68
http://refhub.elsevier.com/S0010-4825(19)30318-X/sref68
https://doi.org/10.1016/S0375-9601(01)00824-6
https://doi.org/10.1016/S0893-6080(00)00053-8
https://doi.org/10.1016/j.pbiomolbio.2010.11.006
https://doi.org/10.1016/j.pbiomolbio.2010.11.006
https://doi.org/10.1109/ISSCS.2013.6651210
https://doi.org/10.1109/ISSCS.2013.6651210
https://doi.org/10.1016/S1388-2457(02)00197-9
https://doi.org/10.1016/S1388-2457(02)00197-9
https://doi.org/10.1016/0013-4694(83)90235-3
https://doi.org/10.1016/0013-4694(83)90235-3
https://doi.org/10.1016/0013-4694(91)90109-H
https://doi.org/10.1016/0013-4694(91)90109-H
http://refhub.elsevier.com/S0010-4825(19)30318-X/sref76
http://refhub.elsevier.com/S0010-4825(19)30318-X/sref76
https://doi.org/10.1016/0013-4694(89)90120-X
https://doi.org/10.1016/0013-4694(89)90120-X
https://doi.org/10.1016/j.jneumeth.2010.06.019
https://doi.org/10.1109/TNSRE.2006.875642
https://doi.org/10.1109/TNSRE.2006.875642
https://doi.org/10.1109/TBME.2004.827088
https://doi.org/10.1109/TBME.2004.827088
https://www.ahajournals.org/doi/abs/10.1161/circ.101.23.e215
https://www.ahajournals.org/doi/abs/10.1161/circ.101.23.e215
https://doi.org/10.1109/TBME.2004.827072
https://tel.archives-ouvertes.fr/tel-00356346v2
https://doi.org/10.1016/S0013-4694(97)00022-2


Computers in Biology and Medicine 114 (2019) 103441

13

[85] R.A. FISHER, The use OF multiple measurements IN taxonomic problems, Ann. 
Eugen. 7 (1936) 179–188, https://doi.org/10.1111/j.1469-1809.1936.tb02137. 
x. 

[86] I. Park, J.C. Príncipe, Correntropy based Granger causality, in: ICASSP, IEEE Int. 
Conf. Acoust. Speech Signal Process. - Proc, 2008, pp. 3605–3608, https://doi. 
org/10.1109/ICASSP.2008.4518432. 

[87] C.E. Shannon, W. Weaver, A Mathematical Theory of Communication, University 
of Illinois Press, Champaign, IL, USA, 1963. 

[88] J.P. Lachaux, E. Rodriguez, J. Martinerie, F.J. Varela, Measuring phase synchrony 
in brain signals, Hum. Brain Mapp. 8 (1999) 194–208, https://doi.org/10.1002/ 
(SICI)1097-0193(1999)8:4<194::AID-HBM4>3.0.CO;2-C. 

[89] J. Arnhold, P. Grassberger, K. Lehnertz, C.E. Elger, A robust method for detecting 
interdependences: application to intracranially recorded EEG, Phys. D Nonlinear 
Phenom. 134 (1999) 419–430, https://doi.org/10.1016/S0167-2789(99)00140- 
2. 

[90] W. Liu, P.P. Pokharel, J.C. Principe, Correntropy: properties and applications in 
non-Gaussian signal processing, IEEE Trans. Signal Process. 55 (2007) 
5286–5298, https://doi.org/10.1109/TSP.2007.896065. 

[91] M. Rao, S. Seth, J. Xu, Y. Chen, H. Tagare, J.C. Príncipe, A test of independence 
based on a generalized correlation function, Signal Process. 91 (2011) 15–27, 
https://doi.org/10.1016/j.sigpro.2010.06.002. 

[92] A. Kraskov, H. St€ogbauer, P. Grassberger, Estimating mutual information, Phys. 
Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Top. 69 (2004) 16, https:// 
doi.org/10.1103/PhysRevE.69.066138. 

[93] C. Brunner, R. Scherer, B. Graimann, G. Supp, G. Pfurtscheller, Online control of a 
brain-computer interface using phase synchronization, IEEE Trans. Biomed. Eng. 
53 (2006) 2501–2506, https://doi.org/10.1109/TBME.2006.881775. 

[94] C. Bandt, B. Pompe, Permutation entropy: a natural complexity measure for time 
series, Phys. Rev. Lett. 88 (2002) 4, https://doi.org/10.1103/ 
PhysRevLett.88.174102. 

[95] R. Baravalle, O.A. Rosso, F. Montani, Causal Shannon-Fisher characterization of 
motor/imagery movements in EEG, Entropy 20 (2018), https://doi.org/10.3390/ 
e20090660. 

[96] R. Baravalle, O.A. Rosso, F. Montani, Rhythmic activities of the brain: quantifying 
the high complexity of beta and gamma oscillations during visuomotor tasks, 
Chaos 28 (2018), https://doi.org/10.1063/1.5025187. 

[97] R.O. Duda, P.E. Hart, D.G. Stork, Pattern Classification, John Wiley & Sons, 2012. 
[98] Q. Wei, Y. Wang, X. Gao, S. Gao, Amplitude and phase coupling measures for 

feature extraction in an EEG-based brain-computer interface, J. Neural Eng. 4 
(2007) 120–129, https://doi.org/10.1088/1741-2560/4/2/012. 

[99] Y. Wang, B. Hong, X. Gao, S. Gao, Phase synchrony measurement in motor cortex 
for classifying single-trial EEG during motor imagery, in: Annu. Int. Conf. IEEE 
Eng. Med. Biol. - Proc, 2006, pp. 75–78, https://doi.org/10.1109/ 
IEMBS.2006.259673. 

[100] D. Rathee, H. Cecotti, G. Prasad, Single-trial effective brain connectivity patterns 
enhance discriminability of mental imagery tasks, J. Neural Eng. 14 (2017), 
https://doi.org/10.1088/1741-2552/aa785c. 

[101] M. Hamedi, S.H. Salleh, C.M. Ting, S.B. Samdin, A. Mohd Noor, Sensor space 
time-varying information flow analysis of multiclass motor imagery through 
Kalman Smoother and em algorithm, in: 2015 Int. Conf. BioSignal Anal. Process. 
Syst. ICBAPS 2015, Institute of Electrical and Electronics Engineers Inc., 2015, 
pp. 118–122, https://doi.org/10.1109/ICBAPS.2015.7292230. 

[102] J.A. Gaxiola-Tirado, R. Salazar-Varas, D. Gutierrez, Using the partial directed 
coherence to assess functional connectivity in electroencephalography data for 
brain-computer interfaces, IEEE Trans. Cogn. Dev. Syst. 10 (2018) 776–783, 
https://doi.org/10.1109/TCDS.2017.2777180. 

[103] G. Müller-Putz, R. Scherer, C. Brunner, R. Leeb, G. Pfurtscheller, Better than 
random: a closer look on BCI results, Int. J. Bioelectromagn. 10 (2008) 52–55. 

[104] C. Park, C.C. Took, D.P. Mandic, Augmented complex common spatial patterns for 
classification of noncircular EEG from motor imagery tasks, IEEE Trans. Neural 
Syst. Rehabil. Eng. 22 (2014) 1–10, https://doi.org/10.1109/ 
TNSRE.2013.2294903. 

[105] Y. Kim, J. Ryu, K.K. Kim, C.C. Took, D.P. Mandic, C. Park, Motor imagery 
classification using mu and beta rhythms of EEG with strong uncorrelating 
transform based complex common spatial patterns, Comput. Intell. Neurosci. 
2016 (2016) 1. 

[106] V.S. Handiru, V.A. Prasad, Optimized Bi-objective EEG channel selection and 
cross-subject generalization with brain-computer interfaces, IEEE Trans. Human- 
Machine Syst. 46 (2016) 777–786, https://doi.org/10.1109/ 
THMS.2016.2573827. 

[107] M. Toli�c, F. Jovi�c, Classification of wavelet transformed EEG signals with neural 
network for imagined mental and motor tasks, Kinesiol. Int. J. Fundam. Appl. 
Kinesiol. 45 (2013) 130–138. 

[108] M. Athif, H. Ren, WaveCSP: a robust motor imagery classifier for consumer EEG 
devices, Australas. Phys. Eng. Sci. Med. 42 (2019) 159–168, https://doi.org/ 
10.1007/s13246-019-00721-0. 

[109] C. Carvalhaes, J.A. De Barros, The surface Laplacian technique in EEG: theory and 
methods, Int. J. Psychophysiol. 97 (2015) 174–188, https://doi.org/10.1016/j. 
ijpsycho.2015.04.023. 

[110] V. Vapnik, The Nature of Statistical Learning Theory, Springer science & business 
media, 2013. 

[111] G.-B. Huang, L. Chen, C.K. Siew, Universal approximation using incremental 
constructive feedforward networks with random hidden nodes, IEEE Trans. 
Neural Netw. 17 (2006) 879–892. 

[112] Y. Zhang, Y. Wang, G. Zhou, J. Jin, B. Wang, X. Wang, A. Cichocki, Multi-kernel 
extreme learning machine for EEG classification in brain-computer interfaces, 

Expert Syst. Appl. 96 (2018) 302–310, https://doi.org/10.1016/j. 
eswa.2017.12.015. 

[113] Z. Jin, G. Zhou, D. Gao, Y. Zhang, EEG classification using sparse Bayesian 
extreme learning machine for brain–computer interface, Neural Comput. Appl. 
(2018), https://doi.org/10.1007/s00521-018-3735-3. 

[114] H. Higashi, T. Tanaka, Simultaneous design of FIR filter banks and spatial patterns 
for EEG signal classification, IEEE Trans. Biomed. Eng. 60 (2013) 1100–1110, 
https://doi.org/10.1109/TBME.2012.2215960. 

[115] K.K. Ang, Z.Y. Chin, H. Zhang, C. Guan, filter bank common spatial pattern 
(FBCSP) in brain-computer interface, in: Proc. Int. Jt. Conf. Neural Networks, 
2008, pp. 2390–2397, https://doi.org/10.1109/IJCNN.2008.4634130. 

[116] M. Goldhacker, A.M. Tom�e, M.W. Greenlee, E.W. Lang, Frequency-resolved 
dynamic functional connectivity reveals scale-stable features of connectivity- 
states, Front. Hum. Neurosci. 12 (2018) 253, https://doi.org/10.3389/ 
fnhum.2018.00253. 

[117] S. Kumar, A. Sharma, T. Tsunoda, An improved discriminative filter bank 
selection approach for motor imagery EEG signal classification using mutual 
information, BMC Bioinf. 18 (2017), https://doi.org/10.1186/s12859-017-1964- 
6. 

[118] R.Q. Quiroga, A. Kraskov, T. Kreuz, P. Grassberger, Performance of different 
synchronization measures in real data: a case study on electroencephalographic 
signals, Phys. Rev. E. 65 (2002) 41903. 

[119] M.H. Wu, R.E. Frye, G. Zouridakis, A comparison of multivariate causality based 
measures of effective connectivity, Comput. Biol. Med. 41 (2011) 1132–1141, 
https://doi.org/10.1016/j.compbiomed.2011.06.007. 

[120] A. Montalto, L. Faes, D. Marinazzo, MuTE: a matlab toolbox to compare 
established and novel estimators of the multivariate transfer entropy, PLoS One 9 
(2014) 1–13, https://doi.org/10.1371/journal.pone.0109462. 

[121] T. Schreiber, Measuring information transfer, Phys. Rev. Lett. 85 (2000) 461–464, 
https://doi.org/10.1103/PhysRevLett.85.461. 

[122] Y. Jiao, Y. Zhang, X. Chen, E. Yin, J. Jin, X. Wang, A. Cichocki, Sparse group 
representation model for motor imagery EEG classification, IEEE J. Biomed. Heal. 
Informatics. 23 (2019) 631–641, https://doi.org/10.1109/JBHI.2018.2832538. 

[123] Y. Zhang, G. Zhou, J. Jin, X. Wang, A. Cichocki, Optimizing spatial patterns with 
sparse filter bands for motor-imagery based brain-computer interface, J. Neurosci. 
Methods 255 (2015) 85–91, https://doi.org/10.1016/j.jneumeth.2015.08.004. 

[124] Y. Zhang, C.S. Nam, G. Zhou, J. Jin, X. Wang, A. Cichocki, Temporally 
constrained sparse group spatial patterns for motor imagery BCI, IEEE Trans. 
Cybern. 49 (2019) 3322–3332, https://doi.org/10.1109/TCYB.2018.2841847. 

[125] L. Xu, H. Zhang, M. Hui, Z. Long, Z. Jin, Y. Liu, L. Yao, Motor execution and motor 
imagery: a comparison of functional connectivity patterns based on graph theory, 
Neuroscience 261 (2014) 184–194, https://doi.org/10.1016/j. 
neuroscience.2013.12.005. 

[126] G. Luppino, G. Rizzolatti, The organization of the frontal motor cortex, Physiology 
15 (2000) 219–224. 

[127] C.A. Porro, M.P. Francescato, V. Cettolo, M.E. Diamond, P. Baraldi, C. Zuiani, 
M. Bazzocchi, P.E. Di Prampero, Primary motor and sensory cortex activation 
during motor performance and motor imagery: a functional magnetic resonance 
imaging study, J. Neurosci. 16 (1996) 7688–7698. 

[128] H. Chen, Q. Yang, W. Liao, Q. Gong, S. Shen, Evaluation of the effective 
connectivity of supplementary motor areas during motor imagery using Granger 
causality mapping, Neuroimage 47 (2009) 1844–1853, https://doi.org/10.1016/ 
j.neuroimage.2009.06.026. 

[129] Q. Gao, X. Duan, H. Chen, Evaluation of effective connectivity of motor areas 
during motor imagery and execution using conditional Granger causality, 
Neuroimage 54 (2011) 1280–1288, https://doi.org/10.1016/j. 
neuroimage.2010.08.071. 

[130] Y. Gao, H. Su, R. Li, Y. Zhang, Synchronous analysis of brain regions based on 
multi-scale permutation transfer entropy, Comput. Biol. Med. 109 (2019) 
272–279, https://doi.org/10.1016/j.compbiomed.2019.04.038. 

[131] D. Rangaprakash, Connectivity analysis of multichannel EEG signals using 
recurrence based phase synchronization technique, Comput. Biol. Med. 46 (2014) 
11–21, https://doi.org/10.1016/j.compbiomed.2013.10.025. 

[132] R.E. Greenblatt, M.E. Pflieger, A.E. Ossadtchi, Connectivity measures applied to 
human brain electrophysiological data, J. Neurosci. Methods 207 (2012) 1–16, 
https://doi.org/10.1016/j.jneumeth.2012.02.025. 

[133] A. Solodkin, P. Hlustik, E.E. Chen, S.L. Small, Fine modulation in network 
activation during motor execution and motor imagery, Cereb. Cortex 14 (2004) 
1246–1255. 

[134] L.A. Wheaton, G. Nolte, S. Bohlhalter, E. Fridman, M. Hallett, Synchronization of 
parietal and premotor areas during preparation and execution of praxis hand 
movements, Clin. Neurophysiol. 116 (2005) 1382–1390, https://doi.org/ 
10.1016/j.clinph.2005.01.008. 

[135] M. Ahn, S.C. Jun, Performance variation in motor imagery brain-computer 
interface: a brief review, J. Neurosci. Methods 243 (2015) 103–110, https://doi. 
org/10.1016/j.jneumeth.2015.01.033. 

B. Orkan Olcay has received the B.Sc. on Electrical and Electronics Engineering from 
Çukurova University, Adana, in 2011. He received his M.Sc. on Electrical and Electronics 
Engineering from Izmir Institute of Technology, Izmir, 2014. He is now working as a 
research assistant in the Department of Electrical and Electronics Engineering, Izmir 
Institute of Technology, Izmir, Turkey. His research interests include Brain Dynamics, 
Complex Brain Networks, Brain-Computer Interfaces, Biomedical Signal Processing. 

B.O. Olcay and B. Karaçalı                                                                                                                                                                                                                   

https://doi.org/10.1111/j.1469-1809.1936.tb02137.x
https://doi.org/10.1111/j.1469-1809.1936.tb02137.x
https://doi.org/10.1109/ICASSP.2008.4518432
https://doi.org/10.1109/ICASSP.2008.4518432
http://refhub.elsevier.com/S0010-4825(19)30318-X/sref87
http://refhub.elsevier.com/S0010-4825(19)30318-X/sref87
https://doi.org/10.1002/(SICI)1097-0193(1999)8:4<194::AID-HBM4>3.0.CO;2-C
https://doi.org/10.1002/(SICI)1097-0193(1999)8:4<194::AID-HBM4>3.0.CO;2-C
https://doi.org/10.1016/S0167-2789(99)00140-2
https://doi.org/10.1016/S0167-2789(99)00140-2
https://doi.org/10.1109/TSP.2007.896065
https://doi.org/10.1016/j.sigpro.2010.06.002
https://doi.org/10.1103/PhysRevE.69.066138
https://doi.org/10.1103/PhysRevE.69.066138
https://doi.org/10.1109/TBME.2006.881775
https://doi.org/10.1103/PhysRevLett.88.174102
https://doi.org/10.1103/PhysRevLett.88.174102
https://doi.org/10.3390/e20090660
https://doi.org/10.3390/e20090660
https://doi.org/10.1063/1.5025187
http://refhub.elsevier.com/S0010-4825(19)30318-X/sref97
https://doi.org/10.1088/1741-2560/4/2/012
https://doi.org/10.1109/IEMBS.2006.259673
https://doi.org/10.1109/IEMBS.2006.259673
https://doi.org/10.1088/1741-2552/aa785c
https://doi.org/10.1109/ICBAPS.2015.7292230
https://doi.org/10.1109/TCDS.2017.2777180
http://refhub.elsevier.com/S0010-4825(19)30318-X/sref103
http://refhub.elsevier.com/S0010-4825(19)30318-X/sref103
https://doi.org/10.1109/TNSRE.2013.2294903
https://doi.org/10.1109/TNSRE.2013.2294903
http://refhub.elsevier.com/S0010-4825(19)30318-X/sref105
http://refhub.elsevier.com/S0010-4825(19)30318-X/sref105
http://refhub.elsevier.com/S0010-4825(19)30318-X/sref105
http://refhub.elsevier.com/S0010-4825(19)30318-X/sref105
https://doi.org/10.1109/THMS.2016.2573827
https://doi.org/10.1109/THMS.2016.2573827
http://refhub.elsevier.com/S0010-4825(19)30318-X/sref107
http://refhub.elsevier.com/S0010-4825(19)30318-X/sref107
http://refhub.elsevier.com/S0010-4825(19)30318-X/sref107
https://doi.org/10.1007/s13246-019-00721-0
https://doi.org/10.1007/s13246-019-00721-0
https://doi.org/10.1016/j.ijpsycho.2015.04.023
https://doi.org/10.1016/j.ijpsycho.2015.04.023
http://refhub.elsevier.com/S0010-4825(19)30318-X/sref110
http://refhub.elsevier.com/S0010-4825(19)30318-X/sref110
http://refhub.elsevier.com/S0010-4825(19)30318-X/sref111
http://refhub.elsevier.com/S0010-4825(19)30318-X/sref111
http://refhub.elsevier.com/S0010-4825(19)30318-X/sref111
https://doi.org/10.1016/j.eswa.2017.12.015
https://doi.org/10.1016/j.eswa.2017.12.015
https://doi.org/10.1007/s00521-018-3735-3
https://doi.org/10.1109/TBME.2012.2215960
https://doi.org/10.1109/IJCNN.2008.4634130
https://doi.org/10.3389/fnhum.2018.00253
https://doi.org/10.3389/fnhum.2018.00253
https://doi.org/10.1186/s12859-017-1964-6
https://doi.org/10.1186/s12859-017-1964-6
http://refhub.elsevier.com/S0010-4825(19)30318-X/sref118
http://refhub.elsevier.com/S0010-4825(19)30318-X/sref118
http://refhub.elsevier.com/S0010-4825(19)30318-X/sref118
https://doi.org/10.1016/j.compbiomed.2011.06.007
https://doi.org/10.1371/journal.pone.0109462
https://doi.org/10.1103/PhysRevLett.85.461
https://doi.org/10.1109/JBHI.2018.2832538
https://doi.org/10.1016/j.jneumeth.2015.08.004
https://doi.org/10.1109/TCYB.2018.2841847
https://doi.org/10.1016/j.neuroscience.2013.12.005
https://doi.org/10.1016/j.neuroscience.2013.12.005
http://refhub.elsevier.com/S0010-4825(19)30318-X/sref126
http://refhub.elsevier.com/S0010-4825(19)30318-X/sref126
http://refhub.elsevier.com/S0010-4825(19)30318-X/sref127
http://refhub.elsevier.com/S0010-4825(19)30318-X/sref127
http://refhub.elsevier.com/S0010-4825(19)30318-X/sref127
http://refhub.elsevier.com/S0010-4825(19)30318-X/sref127
https://doi.org/10.1016/j.neuroimage.2009.06.026
https://doi.org/10.1016/j.neuroimage.2009.06.026
https://doi.org/10.1016/j.neuroimage.2010.08.071
https://doi.org/10.1016/j.neuroimage.2010.08.071
https://doi.org/10.1016/j.compbiomed.2019.04.038
https://doi.org/10.1016/j.compbiomed.2013.10.025
https://doi.org/10.1016/j.jneumeth.2012.02.025
http://refhub.elsevier.com/S0010-4825(19)30318-X/sref133
http://refhub.elsevier.com/S0010-4825(19)30318-X/sref133
http://refhub.elsevier.com/S0010-4825(19)30318-X/sref133
https://doi.org/10.1016/j.clinph.2005.01.008
https://doi.org/10.1016/j.clinph.2005.01.008
https://doi.org/10.1016/j.jneumeth.2015.01.033
https://doi.org/10.1016/j.jneumeth.2015.01.033


Computers in Biology and Medicine 114 (2019) 103441

14

Bilge Karaçalı has received his BS on Electrical and Electronics Engineering from Bilkent 
University, and MS and PhD on Electrical Engineering from the North Carolina State 
University in 1999 and 2002. He worked as a postdoctoral research fellow in the Radiology 
Department of the School of Medicine, University of Pennsylvania. He joined the school of 
Biomedical Engineering, Science and Health Systems at Drexel University in 2005 as a 

research assistant professor and the assistant director of bioimaging of the Center of In
tegrated Bioinformatics. He is currently with the Electrical and Electronics Engineering 
Department at Izmir Institute of Technology as a full professor. He is director of the 
Biomedical Information Processing Laboratory. 

B.O. Olcay and B. Karaçalı                                                                                                                                                                                                                   


	Evaluation of synchronization measures for capturing the lagged synchronization between EEG channels: A cognitive task reco ...
	1 Introduction
	2 Materials and Methods
	2.1 Dataset
	2.2 Proposed Method for Motor Imagery Recognition
	2.2.1 Training Phase
	2.2.2 Test Phase

	2.3 Synchronization Measures
	2.3.1 Time-Delayed Cross-Correntropy
	2.3.2 Time-Delayed Mutual Information
	2.3.3 Phase Locking Value
	2.3.4 Cross-Correlation
	2.3.5 Nonlinear Interdependency
	2.3.6 Cosine-based Similarity


	3 Results
	4 Discussion
	5 Conclusions
	Conflicts of interest
	Acknowledgement
	References


