Please use this identifier to cite or link to this item: https://hdl.handle.net/11147/8857
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKeçili, Seren-
dc.contributor.authorTekin, Hüseyin Cumhur-
dc.date.accessioned2020-07-18T08:34:03Z-
dc.date.available2020-07-18T08:34:03Z-
dc.date.issued2020-
dc.identifier.issn1932-1058-
dc.identifier.urihttps://doi.org/10.1063/5.0003302-
dc.identifier.urihttps://hdl.handle.net/11147/8857-
dc.description.abstractRecently, the use of 3D printing technologies has become prevalent in microfluidic applications. Although these technologies enable low-cost, rapid, and easy fabrication of microfluidic devices, fabricated devices suffer from optical opaqueness that inhibits their use for microscopic imaging. This study investigates bonding strategies using polydimethylsiloxane (PDMS) and printer resin as interlayer materials to fabricate high-strength optically transparent 3D-printed microfluidic devices. First, we fabricated microfluidic structures using a stereolithography 3D printer. We placed 3D-printed structures on interlayer materials coated surfaces. Then, we either let these 3D-printed structures rest on the coated slides or transferred them to new glass slides. We achieved bonding between 3D-printed structures and glass substrates with UV exposure for resin and with elevated temperature for PDMS interlayer materials. Bonding strength was investigated for different interlayer material thicknesses. We also analyzed the bright-field and fluorescence imaging capability of microfluidic devices fabricated using different bonding strategies. We achieve up to twofold (9.1 bar) improved bonding strength and comparable fluorescence sensitivity with respect to microfluidic devices fabricated using the traditional plasma activated PDMS-glass bonding method. Although stereolithography 3D printer allows fabrication of enclosed channels having dimensions down to similar to 600 mu m, monolithic transparent microfluidic channels with 280 x 110 mu m(2) cross section can be realized using adhesive interlayers. Furthermore, 3D-printed microfluidic chips can be integrated successfully with Protein-G modified substrates using resin interlayers for detection of fluorescent-labeled immunoglobulin down to similar to 30 ng/ml. Hence, this strategy can be applied to fabricate high-strength and transparent microfluidic chips for various optical imaging applications including biosensing.en_US
dc.language.isoenen_US
dc.publisherAmerican Institute of Physicsen_US
dc.relation.ispartofBiomicrofluidicsen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.titleAdhesive bonding strategies to fabricate high-strength and transparent 3D printed microfluidic deviceen_US
dc.typeArticleen_US
dc.institutionauthorKeçili, Seren-
dc.institutionauthorTekin, Hüseyin Cumhur-
dc.departmentİzmir Institute of Technology. Bioengineeringen_US
dc.identifier.volume14en_US
dc.identifier.issue2en_US
dc.identifier.wosWOS:000529275100002en_US
dc.identifier.scopus2-s2.0-85083886834en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.doi10.1063/5.0003302-
dc.identifier.pmid32341724en_US
dc.relation.doi10.1063/5.0003302en_US
dc.coverage.doi10.1063/5.0003302en_US
dc.identifier.wosqualityQ2-
dc.identifier.scopusqualityQ2-
item.grantfulltextopen-
item.openairetypeArticle-
item.fulltextWith Fulltext-
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.languageiso639-1en-
crisitem.author.dept03.01. Department of Bioengineering-
Appears in Collections:Bioengineering / Biyomühendislik
PubMed İndeksli Yayınlar Koleksiyonu / PubMed Indexed Publications Collection
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File SizeFormat 
5.0003302.pdf1.77 MBAdobe PDFView/Open
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

17
checked on Apr 5, 2024

WEB OF SCIENCETM
Citations

14
checked on May 4, 2024

Page view(s)

196
checked on May 6, 2024

Download(s)

68
checked on May 6, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.