Please use this identifier to cite or link to this item: https://hdl.handle.net/11147/7629
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAraromi, Dauda Olurotimi-
dc.contributor.authorMajekodunmi, Olukayode Titus-
dc.contributor.authorAdeniran, Jamiu Adetayo-
dc.contributor.authorSalawudeen, Taofeeq Olalekan-
dc.date.accessioned2020-01-27T11:43:53Z
dc.date.available2020-01-27T11:43:53Z
dc.date.issued2018-09en_US
dc.identifier.citationAraromi, D. O., Majekodunmi, O. T., Adeniran, J. A., and Salawudeen, T. O. (2018). Modeling of an activated sludge process for effluent prediction—a comparative study using ANFIS and GLM regression. Environmental Monitoring and Assessment, 190(9). doi:10.1007/s10661-018-6878-xen_US
dc.identifier.issn0167-6369
dc.identifier.issn0167-6369-
dc.identifier.urihttps://doi.org/10.1007/s10661-018-6878-x
dc.identifier.urihttps://hdl.handle.net/11147/7629
dc.description.abstractIn this paper, nonlinear system identification of the activated sludge process in an industrial wastewater treatment plant was completed using adaptive neuro-fuzzy inference system (ANFIS) and generalized linear model (GLM) regression. Predictive models of the effluent chemical and 5-day biochemical oxygen demands were developed from measured past inputs and outputs. From a set of candidates, least absolute shrinkage and selection operator (LASSO), and a fuzzy brute-force search were utilized in selecting the best combination of regressors for the GLMs and ANFIS models respectively. Root mean square error (RMSE) and Pearson’s correlation coefficient (R-value) served as metrics in assessing the predicting performance of the models. Contrasted with the GLM predictions, the obtained modeling results show that the ANFIS models provide better predictions of the studied effluent variables. The results of the empirical search for the dominant regressors indicate the models have an enormous potential in the estimation of the time lag before a desired effluent quality can be realized, and preempting process disturbances. Hence, the models can be used in developing a software tool that will facilitate the effective management of the treatment operation.en_US
dc.language.isoengen_US
dc.publisherSpringer Verlagen_US
dc.relation.ispartofEnvironmental Monitoring and Assessmenten_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectFuzzy exhaustive searchen_US
dc.subjectANFISen_US
dc.subjectGLM regressionen_US
dc.subjectLASSO regularizationen_US
dc.subjectPredictive modelsen_US
dc.subjectWastewater treatment processen_US
dc.titleModeling of an activated sludge process for effluent prediction—a comparative study using ANFIS and GLM regressionen_US
dc.typeArticleen_US
dc.institutionauthorMajekodunmi, Olukayode Titus-
dc.departmentİzmir Institute of Technology. Chemical Engineeringen_US
dc.identifier.volume190en_US
dc.identifier.issue9en_US
dc.identifier.wosWOS:000440629500001en_US
dc.identifier.scopus2-s2.0-85050932333en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.doi10.1007/s10661-018-6878-x-
dc.identifier.pmid30069797en_US
dc.relation.doi10.1007/s10661-018-6878-xen_US
dc.coverage.doi10.1007/s10661-018-6878-xen_US
dc.identifier.wosqualityQ3-
dc.identifier.scopusqualityQ2-
item.fulltextWith Fulltext-
item.grantfulltextopen-
item.languageiso639-1en-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.openairetypeArticle-
Appears in Collections:Chemical Engineering / Kimya Mühendisliği
PubMed İndeksli Yayınlar Koleksiyonu / PubMed Indexed Publications Collection
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
Sürdürülebilir Yeşil Kampüs Koleksiyonu / Sustainable Green Campus Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File Description SizeFormat 
Araromi2018_Article.pdfMakale (Article)1.24 MBAdobe PDFThumbnail
View/Open
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

24
checked on Nov 15, 2024

WEB OF SCIENCETM
Citations

18
checked on Oct 26, 2024

Page view(s)

318
checked on Nov 18, 2024

Download(s)

392
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.