Please use this identifier to cite or link to this item: https://hdl.handle.net/11147/7568
Title: Investigation of the influence of high glucose on molecular and genetic responses: An in vitro study using a human intestine model
Authors: Boztepe, Tuğçe
Güleç, Şükrü
Boztepe, Tuğçe
Güleç, Şükrü
Izmir Institute of Technology. Food Engineering
Keywords: High glucose consumption
ABC transporter A1
Obesity
LCN15 gene
TXNIP gene
Caco-2 cell line
Issue Date: Apr-2018
Publisher: BioMed Central Ltd.
Source: Boztepe, T., and Güleç, Ş. (2018). Investigation of the influence of high glucose on molecular and genetic responses: An in vitro study using a human intestine model. Genes and Nutrition, 13(1). doi:10.1186/s12263-018-0602-x
Abstract: Background: Dietary glucose consumption has increased worldwide. Long-term high glucose intake contributes to the development of obesity and type 2 diabetes mellitus (T2DM). Obese people tend to eat glucose-containing foods, which can lead to an addiction to glucose, increased glucose levels in the blood and intestine lumen, and exposure of intestinal enterocytes to high dietary glucose. Recent studies have documented a role for enterocytes in glucose sensing. However, the molecular and genetic relationship between high glucose levels and intestinal enterocytes has not been determined. We aimed to identify relevant target genes and molecular pathways regulated by high glucose in a well-established in vitro epithelial cell culture model of the human intestinal system (Caco-2 cells). Methods: Cells were grown in a medium containing 5.5 and 25 mM glucose in a bicameral culture system for 21 days to mimic the human intestine. Transepithelial electrical resistance was used to control monolayer formation and polarization of the cells. Total RNA was isolated, and genome-wide mRNA expression profiles were determined. Molecular pathways were analyzed using the DAVID bioinformatics program. Gene expression levels were confirmed by quantitative reverse transcription polymerase chain reaction (RT-qPCR). Results: Microarray gene expression data demonstrated that 679 genes (297 upregulated, 382 downregulated) were affected by high glucose treatment. Bioinformatics analysis indicated that intracellular protein export (p=0.0069) and ubiquitin-mediated proteolysis (p=0.024) pathways were induced, whereas glycolysis/gluconeogenesis (p<0.0001), pentose phosphate (p=0.0043), and fructose-mannose metabolism (p=0.013) pathways were downregulated, in response to high glucose. Microarray analysis of gene expression showed that high glucose significantly induced mRNA expression levels of thioredoxin-interacting protein (TXNIP, p=0.0001) and lipocalin 15 (LCN15, p=0.0016) and reduced those of ATP-binding cassette, sub-family A member 1 (ABCA1, p=0.0004), and iroquois homeobox 3 (IRX3, p=0.0001). Conclusions: To our knowledge, this is the first investigation of high glucose-regulated molecular responses in an intestinal enterocyte model. Our findings identify new target genes that may be important in the intestinal glucose absorption and metabolism during high glucose consumption.
URI: https://doi.org/10.1186/s12263-018-0602-x
https://hdl.handle.net/11147/7568
ISSN: 1865-3499
1865-3499
Appears in Collections:Food Engineering / Gıda Mühendisliği
PubMed İndeksli Yayınlar Koleksiyonu / PubMed Indexed Publications Collection
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection

Files in This Item:
File Description SizeFormat 
7568.pdfMakale (Article)601.82 kBAdobe PDFThumbnail
View/Open
Show full item record

CORE Recommender

SCOPUSTM   
Citations

10
checked on Jul 31, 2021

WEB OF SCIENCETM
Citations

10
checked on Jul 31, 2021

Page view(s)

18
checked on Aug 2, 2021

Download(s)

16
checked on Aug 2, 2021

Google ScholarTM

Check

Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.