Please use this identifier to cite or link to this item:
https://hdl.handle.net/11147/7091
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Barış, İpek | - |
dc.contributor.author | Baştanlar, Yalın | - |
dc.date.accessioned | 2019-02-05T13:44:56Z | |
dc.date.available | 2019-02-05T13:44:56Z | |
dc.date.issued | 2018-03 | |
dc.identifier.citation | Barış, İ., and Baştanlar, Y. (2018, October 16-19). Classification and tracking of traffic scene objects with hybrid camera systems. Paper presented at the 20th IEEE International Conference on Intelligent Transportation Systems, ITSC 2017. doi:10.1109/ITSC.2017.8317588 | en_US |
dc.identifier.isbn | 978-153861525-6 | |
dc.identifier.uri | https://doi.org/10.1109/ITSC.2017.8317588 | |
dc.identifier.uri | http://hdl.handle.net/11147/7091 | |
dc.description | 20th IEEE International Conference on Intelligent Transportation Systems, ITSC 2017; Mielparque YokohamaYokohama, Kanagawa; Japan; 16 October 2017 through 19 October 2017 | en_US |
dc.description.abstract | In a hybrid camera system combining an omnidirectional and a Pan-Tilt-Zoom (PTZ) camera, the omnidirectional camera provides 360 degree horizontal field-of-view, whereas the PTZ camera provides high resolution at a certain direction. This results in a wide field-of-view and high resolution camera system. In this paper, we exploit this hybrid system for real-time object classification and tracking for traffic scenes. The omnidirectional camera detects the moving objects and performs an initial classification using shape-based features. Concurrently, the PTZ camera classifies the objects using high resolution frames and Histogram of Oriented Gradients (HOG) features. PTZ camera also performs high-resolution tracking for the objects classified as the target class by the omnidirectional camera. The object types we worked on are pedestrian, motorcycle, car and van. Extensive experiments were conducted to compare the classification accuracy of the hybrid system with single camera alternatives. | en_US |
dc.description.sponsorship | TUBITAK Project No: 113E107 | en_US |
dc.language.iso | en | en_US |
dc.publisher | Institute of Electrical and Electronics Engineers Inc. | en_US |
dc.relation | info:eu-repo/grantAgreement/TUBITAK/EEEAG/113E107 | en_US |
dc.relation.ispartof | 20th IEEE International Conference on Intelligent Transportation Systems, ITSC 2017 | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | Hybrid camera system | en_US |
dc.subject | Object detection | en_US |
dc.subject | Omnidirectional camera | en_US |
dc.subject | Vehicle detection | en_US |
dc.title | Classification and tracking of traffic scene objects with hybrid camera systems | en_US |
dc.type | Conference Object | en_US |
dc.authorid | TR176747 | en_US |
dc.institutionauthor | Barış, İpek | - |
dc.institutionauthor | Baştanlar, Yalın | - |
dc.department | İzmir Institute of Technology. Computer Engineering | en_US |
dc.identifier.volume | 2018 | en_US |
dc.identifier.startpage | 1 | en_US |
dc.identifier.endpage | 6 | en_US |
dc.identifier.wos | WOS:000432373000007 | en_US |
dc.identifier.scopus | 2-s2.0-85046288603 | en_US |
dc.relation.publicationcategory | Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı | en_US |
dc.identifier.doi | 10.1109/ITSC.2017.8317588 | - |
dc.relation.doi | 10.1109/ITSC.2017.8317588 | en_US |
dc.coverage.doi | 10.1109/ITSC.2017.8317588 | en_US |
dc.identifier.wosquality | N/A | - |
dc.identifier.scopusquality | N/A | - |
item.fulltext | With Fulltext | - |
item.grantfulltext | open | - |
item.languageiso639-1 | en | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.cerifentitytype | Publications | - |
item.openairetype | Conference Object | - |
crisitem.author.dept | 03.04. Department of Computer Engineering | - |
Appears in Collections: | Computer Engineering / Bilgisayar Mühendisliği Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection |
CORE Recommender
SCOPUSTM
Citations
12
checked on Nov 15, 2024
WEB OF SCIENCETM
Citations
4
checked on Nov 9, 2024
Page view(s)
352
checked on Nov 18, 2024
Download(s)
262
checked on Nov 18, 2024
Google ScholarTM
Check
Altmetric
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.