Please use this identifier to cite or link to this item: https://hdl.handle.net/11147/6810
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAllmer, Jens-
dc.date.accessioned2018-02-20T10:46:01Z-
dc.date.available2018-02-20T10:46:01Z-
dc.date.issued2014-
dc.identifier.citationAllmer, J. (2014). Computational and bioinformatics methods for microRNA gene prediction. Methods in Molecular Biology, 1107, 157-175. doi:10.1007/978-1-62703-748-8_9en_US
dc.identifier.issn1940-6029-
dc.identifier.issn1064-3745-
dc.identifier.urihttp://doi.org/10.1007/978-1-62703-748-8_9-
dc.identifier.urihttp://hdl.handle.net/11147/6810-
dc.description.abstractMicroRNAs (miRNAs) have attracted ever-increasing interest in recent years. Since experimental approaches for determining miRNAs are nontrivial in their application, computational methods for the prediction of miRNAs have gained popularity. Such methods can be grouped into two broad categories (1) performing ab initio predictions of miRNAs from primary sequence alone and (2) additionally employing phylogenetic conservation. Most methods acknowledge the importance of hairpin or stem-loop structures and employ various methods for the prediction of RNA secondary structure. Machine learning has been employed in both categories with classification being the predominant method. In most cases, positive and negative examples are necessary for performing classification. Since it is currently elusive to experimentally determine all possible miRNAs for an organism, true negative examples are hard to come by, and therefore the accuracy assessment of algorithms is hampered. In this chapter, first RNA secondary structure prediction is introduced since it provides a basis for miRNA prediction. This is followed by an assessment of homology and then ab initio miRNA prediction methods.en_US
dc.description.sponsorshipTUBA GEBIPen_US
dc.language.isoenen_US
dc.publisherHumana Pressen_US
dc.relation.ispartofMethods in Molecular Biologyen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectAb initio predictionen_US
dc.subjectMicroRNAsen_US
dc.subjectBioinformaticsen_US
dc.subjectSecondary structure predictionen_US
dc.titleComputational and bioinformatics methods for microRNA gene predictionen_US
dc.typeArticleen_US
dc.authoridTR107974en_US
dc.institutionauthorAllmer, Jens-
dc.departmentİzmir Institute of Technology. Molecular Biology and Geneticsen_US
dc.identifier.volume1107en_US
dc.identifier.startpage157en_US
dc.identifier.endpage175en_US
dc.identifier.wosWOS:000329167800010en_US
dc.identifier.scopus2-s2.0-84934436006en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.doi10.1007/978-1-62703-748-8_9-
dc.identifier.pmid24272436en_US
dc.relation.doi10.1007/978-1-62703-748-8_9en_US
dc.coverage.doi10.1007/978-1-62703-748-8_9en_US
dc.identifier.wosqualityN/A-
dc.identifier.scopusqualityQ4-
item.fulltextWith Fulltext-
item.grantfulltextopen-
item.languageiso639-1en-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.openairetypeArticle-
crisitem.author.dept04.03. Department of Molecular Biology and Genetics-
Appears in Collections:Molecular Biology and Genetics / Moleküler Biyoloji ve Genetik
PubMed İndeksli Yayınlar Koleksiyonu / PubMed Indexed Publications Collection
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File Description SizeFormat 
6810.pdfMakale280.16 kBAdobe PDFThumbnail
View/Open
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

17
checked on Nov 15, 2024

WEB OF SCIENCETM
Citations

14
checked on Nov 9, 2024

Page view(s)

286
checked on Nov 18, 2024

Download(s)

268
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.