Please use this identifier to cite or link to this item: https://hdl.handle.net/11147/6655
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSaçar Demirci, Müşerref Duygu-
dc.contributor.authorBaumbach, Jan-
dc.contributor.authorAllmer, Jens-
dc.date.accessioned2018-01-08T08:51:08Z-
dc.date.available2018-01-08T08:51:08Z-
dc.date.issued2017-12-
dc.identifier.citationSaçar Demirci, M. D., Baumbach, J., and Allmer, J. (2017). On the performance of pre-microRNA detection algorithms. Nature Communications, 8(1). doi:10.1038/s41467-017-00403-zen_US
dc.identifier.issn2041-1723-
dc.identifier.urihttp://doi.org/10.1038/s41467-017-00403-z-
dc.identifier.urihttp://hdl.handle.net/11147/6655-
dc.description.abstractMicroRNAs are crucial for post-transcriptional gene regulation, and their dysregulation has been associated with diseases like cancer and, therefore, their analysis has become popular. The experimental discovery of miRNAs is cumbersome and, thus, many computational tools have been proposed. Here we assess 13 ab initio pre-miRNA detection approaches using all relevant, published, and novel data sets while judging algorithm performance based on ten intrinsic performance measures. We present an extensible framework, izMiR, which allows for the unbiased comparison of existing algorithms, adding new ones, and combining multiple approaches into ensemble methods. In an exhaustive attempt, we condense the results of millions of computations and show that no method is clearly superior; however, we provide a guideline for biomedical researchers to select a tool. Finally, we demonstrate that combining all of the methods into one ensemble approach, for the first time, allows reliable purely computational pre-miRNA detection in large eukaryotic genomes.en_US
dc.description.sponsorshipScientific Research Council of Turkey (TUBITAK 113E326)en_US
dc.language.isoenen_US
dc.publisherNature Publishing Groupen_US
dc.relationinfo:eu-repo/grantAgreement/TUBITAK/EEEAG/113E326en_US
dc.relation.ispartofNature Communicationsen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectMicroRNAsen_US
dc.subjectRNA precursoren_US
dc.subjectGene expression regulationen_US
dc.subjectMachine learningen_US
dc.subjectComputational biologyen_US
dc.titleOn the performance of pre-microRNA detection algorithmsen_US
dc.typeArticleen_US
dc.authoridTR107974en_US
dc.institutionauthorSaçar Demirci, Müşerref Duygu-
dc.institutionauthorAllmer, Jens-
dc.departmentİzmir Institute of Technology. Molecular Biology and Geneticsen_US
dc.identifier.volume8en_US
dc.identifier.issue1en_US
dc.identifier.wosWOS:000408374800002en_US
dc.identifier.scopus2-s2.0-85028057124en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.doi10.1038/s41467-017-00403-z-
dc.identifier.pmid28839141en_US
dc.relation.doi10.1038/s41467-017-00403-zen_US
dc.coverage.doi10.1038/s41467-017-00403-zen_US
dc.identifier.wosqualityQ1-
dc.identifier.scopusqualityQ1-
item.fulltextWith Fulltext-
item.grantfulltextopen-
item.languageiso639-1en-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.openairetypeArticle-
crisitem.author.dept04.03. Department of Molecular Biology and Genetics-
Appears in Collections:Molecular Biology and Genetics / Moleküler Biyoloji ve Genetik
PubMed İndeksli Yayınlar Koleksiyonu / PubMed Indexed Publications Collection
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File Description SizeFormat 
6655.pdfMakale682.52 kBAdobe PDFThumbnail
View/Open
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

42
checked on Nov 15, 2024

WEB OF SCIENCETM
Citations

34
checked on Nov 9, 2024

Page view(s)

238
checked on Nov 18, 2024

Download(s)

168
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.