Please use this identifier to cite or link to this item:
https://hdl.handle.net/11147/6655
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Saçar Demirci, Müşerref Duygu | - |
dc.contributor.author | Baumbach, Jan | - |
dc.contributor.author | Allmer, Jens | - |
dc.date.accessioned | 2018-01-08T08:51:08Z | - |
dc.date.available | 2018-01-08T08:51:08Z | - |
dc.date.issued | 2017-12 | - |
dc.identifier.citation | Saçar Demirci, M. D., Baumbach, J., and Allmer, J. (2017). On the performance of pre-microRNA detection algorithms. Nature Communications, 8(1). doi:10.1038/s41467-017-00403-z | en_US |
dc.identifier.issn | 2041-1723 | - |
dc.identifier.uri | http://doi.org/10.1038/s41467-017-00403-z | - |
dc.identifier.uri | http://hdl.handle.net/11147/6655 | - |
dc.description.abstract | MicroRNAs are crucial for post-transcriptional gene regulation, and their dysregulation has been associated with diseases like cancer and, therefore, their analysis has become popular. The experimental discovery of miRNAs is cumbersome and, thus, many computational tools have been proposed. Here we assess 13 ab initio pre-miRNA detection approaches using all relevant, published, and novel data sets while judging algorithm performance based on ten intrinsic performance measures. We present an extensible framework, izMiR, which allows for the unbiased comparison of existing algorithms, adding new ones, and combining multiple approaches into ensemble methods. In an exhaustive attempt, we condense the results of millions of computations and show that no method is clearly superior; however, we provide a guideline for biomedical researchers to select a tool. Finally, we demonstrate that combining all of the methods into one ensemble approach, for the first time, allows reliable purely computational pre-miRNA detection in large eukaryotic genomes. | en_US |
dc.description.sponsorship | Scientific Research Council of Turkey (TUBITAK 113E326) | en_US |
dc.language.iso | en | en_US |
dc.publisher | Nature Publishing Group | en_US |
dc.relation | info:eu-repo/grantAgreement/TUBITAK/EEEAG/113E326 | en_US |
dc.relation.ispartof | Nature Communications | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | MicroRNAs | en_US |
dc.subject | RNA precursor | en_US |
dc.subject | Gene expression regulation | en_US |
dc.subject | Machine learning | en_US |
dc.subject | Computational biology | en_US |
dc.title | On the performance of pre-microRNA detection algorithms | en_US |
dc.type | Article | en_US |
dc.authorid | TR107974 | en_US |
dc.institutionauthor | Saçar Demirci, Müşerref Duygu | - |
dc.institutionauthor | Allmer, Jens | - |
dc.department | İzmir Institute of Technology. Molecular Biology and Genetics | en_US |
dc.identifier.volume | 8 | en_US |
dc.identifier.issue | 1 | en_US |
dc.identifier.wos | WOS:000408374800002 | en_US |
dc.identifier.scopus | 2-s2.0-85028057124 | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.identifier.doi | 10.1038/s41467-017-00403-z | - |
dc.identifier.pmid | 28839141 | en_US |
dc.relation.doi | 10.1038/s41467-017-00403-z | en_US |
dc.coverage.doi | 10.1038/s41467-017-00403-z | en_US |
dc.identifier.wosquality | Q1 | - |
dc.identifier.scopusquality | Q1 | - |
item.fulltext | With Fulltext | - |
item.grantfulltext | open | - |
item.languageiso639-1 | en | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.cerifentitytype | Publications | - |
item.openairetype | Article | - |
crisitem.author.dept | 04.03. Department of Molecular Biology and Genetics | - |
Appears in Collections: | Molecular Biology and Genetics / Moleküler Biyoloji ve Genetik PubMed İndeksli Yayınlar Koleksiyonu / PubMed Indexed Publications Collection Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection |
CORE Recommender
SCOPUSTM
Citations
42
checked on Nov 15, 2024
WEB OF SCIENCETM
Citations
34
checked on Nov 9, 2024
Page view(s)
238
checked on Nov 18, 2024
Download(s)
168
checked on Nov 18, 2024
Google ScholarTM
Check
Altmetric
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.