Please use this identifier to cite or link to this item: https://hdl.handle.net/11147/6359
Full metadata record
DC FieldValueLanguage
dc.contributor.authorYousef, Malik-
dc.contributor.authorKhalifa, Waleed-
dc.contributor.authorAcar, İlhan Erkin-
dc.contributor.authorAllmer, Jens-
dc.date.accessioned2017-10-16T08:35:26Z-
dc.date.available2017-10-16T08:35:26Z-
dc.date.issued2017-03-
dc.identifier.citationYousef, M., Khalifa, W., Acar, İ. E., and Allmer, J. (2017). MicroRNA categorization using sequence motifs and k-mers. BMC Bioinformatics, 18(1). doi:10.1186/s12859-017-1584-1en_US
dc.identifier.issn1471-2105-
dc.identifier.urihttp://doi.org/10.1186/s12859-017-1584-1-
dc.identifier.urihttp://hdl.handle.net/11147/6359-
dc.description.abstractBackground: Post-transcriptional gene dysregulation can be a hallmark of diseases like cancer and microRNAs (miRNAs) play a key role in the modulation of translation efficiency. Known pre-miRNAs are listed in miRBase, and they have been discovered in a variety of organisms ranging from viruses and microbes to eukaryotic organisms. The computational detection of pre-miRNAs is of great interest, and such approaches usually employ machine learning to discriminate between miRNAs and other sequences. Many features have been proposed describing pre-miRNAs, and we have previously introduced the use of sequence motifs and k-mers as useful ones. There have been reports of xeno-miRNAs detected via next generation sequencing. However, they may be contaminations and to aid that important decision-making process, we aimed to establish a means to differentiate pre-miRNAs from different species. Results: To achieve distinction into species, we used one species' pre-miRNAs as the positive and another species' pre-miRNAs as the negative training and test data for the establishment of machine learned models based on sequence motifs and k-mers as features. This approach resulted in higher accuracy values between distantly related species while species with closer relation produced lower accuracy values. Conclusions: We were able to differentiate among species with increasing success when the evolutionary distance increases. This conclusion is supported by previous reports of fast evolutionary changes in miRNAs since even in relatively closely related species a fairly good discrimination was possible.en_US
dc.description.sponsorshipScientific and Technological Research Council of Turkey (113E326); Zefat Academic Collegeen_US
dc.language.isoenen_US
dc.publisherBioMed Central Ltd.en_US
dc.relationinfo:eu-repo/grantAgreement/TUBITAK/EEEAG/113E326en_US
dc.relation.ispartofBMC Bioinformaticsen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectMachine learningen_US
dc.subjectMicroRNAsen_US
dc.subjectMiRNA categorizationen_US
dc.subjectSequence motifsen_US
dc.subjectDifferentiate miRNAs among speciesen_US
dc.titleMicroRNA categorization using sequence motifs and k-mersen_US
dc.typeArticleen_US
dc.authoridTR107974en_US
dc.institutionauthorAcar, İlhan Erkin-
dc.institutionauthorAllmer, Jens-
dc.departmentİzmir Institute of Technology. Molecular Biology and Geneticsen_US
dc.identifier.volume18en_US
dc.identifier.issue1en_US
dc.identifier.wosWOS:000397508500004en_US
dc.identifier.scopus2-s2.0-85015613147en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.doi10.1186/s12859-017-1584-1-
dc.identifier.pmid28292266en_US
dc.relation.doi10.1186/s12859-017-1584-1en_US
dc.coverage.doi10.1186/s12859-017-1584-1en_US
dc.identifier.wosqualityQ2-
dc.identifier.scopusqualityQ3-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.grantfulltextopen-
item.cerifentitytypePublications-
item.fulltextWith Fulltext-
item.openairetypeArticle-
item.languageiso639-1en-
crisitem.author.dept01. Izmir Institute of Technology-
crisitem.author.dept04.03. Department of Molecular Biology and Genetics-
Appears in Collections:Molecular Biology and Genetics / Moleküler Biyoloji ve Genetik
PubMed İndeksli Yayınlar Koleksiyonu / PubMed Indexed Publications Collection
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File Description SizeFormat 
6359.pdfMakale773.31 kBAdobe PDFThumbnail
View/Open
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

25
checked on Nov 23, 2024

WEB OF SCIENCETM
Citations

20
checked on Nov 9, 2024

Page view(s)

248
checked on Nov 18, 2024

Download(s)

158
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.