Please use this identifier to cite or link to this item: https://hdl.handle.net/11147/6284
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSaçar Demirci, Müşerref Duygu-
dc.contributor.authorAllmer, Jens-
dc.date.accessioned2017-09-20T12:33:55Z-
dc.date.available2017-09-20T12:33:55Z-
dc.date.issued2017-
dc.identifier.citationSaçar Demirci, M. D., and Allmer, J. (2017). Delineating the impact of machine learning elements in pre-microRNA detection. PeerJ, 2017(3). doi:10.7717/peerj.3131en_US
dc.identifier.issn2167-8359-
dc.identifier.urihttp://doi.org/10.7717/peerj.3131-
dc.identifier.urihttp://hdl.handle.net/11147/6284-
dc.description.abstractGene regulation modulates RNA expression via transcription factors. Posttranscriptional gene regulation in turn influences the amount of protein product through, for example, microRNAs (miRNAs). Experimental establishment of miRNAs and their effects is complicated and even futile when aiming to establish the entirety of miRNA target interactions. Therefore, computational approaches have been proposed. Many such tools rely on machine learning (ML) which involves example selection, feature extraction, model training, algorithm selection, and parameter optimization. Different ML algorithms have been used for model training on various example sets, more than 1,000 features describing pre-miRNAs have been proposed and different training and testing schemes have been used for model establishment. For pre-miRNA detection, negative examples cannot easily be established causing a problem for two class classification algorithms. There is also no consensus on what ML approach works best and, therefore, we set forth and established the impact of the different parts involved in ML on model performance. Furthermore, we established two new negative datasets and analyzed the impact of using them for training and testing. It was our aim to attach an order of importance to the parts involved in ML for pre-miRNA detection, but instead we found that all parts are intricately connected and their contributions cannot be easily untangled leading us to suggest that when attempting ML-based pre-miRNA detection many scenarios need to be explored.en_US
dc.description.sponsorshipScientific and Technological Research Council of Turkey (113E326)en_US
dc.language.isoenen_US
dc.publisherPeerJ Inc.en_US
dc.relationinfo:eu-repo/grantAgreement/TUBITAK/EEEAG/113E326en_US
dc.relation.ispartofPeerJen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectFeature selectionen_US
dc.subjectMicroRNAsen_US
dc.subjectML strategyen_US
dc.subjectNegative dataseten_US
dc.titleDelineating the impact of machine learning elements in pre-microRNA detectionen_US
dc.typeArticleen_US
dc.authoridTR107974en_US
dc.institutionauthorSaçar Demirci, Müşerref Duygu-
dc.institutionauthorAllmer, Jens-
dc.departmentİzmir Institute of Technology. Molecular Biology and Geneticsen_US
dc.identifier.volume2017en_US
dc.identifier.issue3en_US
dc.identifier.wosWOS:000397973700004en_US
dc.identifier.scopus2-s2.0-85016400996en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.doi10.7717/peerj.3131-
dc.identifier.pmid28367373en_US
dc.relation.doi10.7717/peerj.3131en_US
dc.coverage.doi10.7717/peerj.3131en_US
dc.identifier.wosqualityQ2-
dc.identifier.scopusqualityQ3-
item.fulltextWith Fulltext-
item.grantfulltextopen-
item.languageiso639-1en-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.openairetypeArticle-
crisitem.author.dept04.03. Department of Molecular Biology and Genetics-
Appears in Collections:Molecular Biology and Genetics / Moleküler Biyoloji ve Genetik
PubMed İndeksli Yayınlar Koleksiyonu / PubMed Indexed Publications Collection
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File Description SizeFormat 
6284.pdfMakale1.12 MBAdobe PDFThumbnail
View/Open
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

13
checked on Nov 15, 2024

WEB OF SCIENCETM
Citations

14
checked on Nov 9, 2024

Page view(s)

292
checked on Nov 18, 2024

Download(s)

152
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.