Please use this identifier to cite or link to this item:
https://hdl.handle.net/11147/6266
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Kandemir, Ali | - |
dc.contributor.author | Özden, Ayberk | - |
dc.contributor.author | Çağın, Tahir | - |
dc.contributor.author | Sevik, Cem | - |
dc.date.accessioned | 2017-09-18T06:36:51Z | |
dc.date.available | 2017-09-18T06:36:51Z | |
dc.date.issued | 2017-01 | |
dc.identifier.citation | Kandemir, A., Özden, A., Çağın, T., and Sevik, C. (2017). Thermal conductivity engineering of bulk and one-dimensional Si-Ge nanoarchitectures. Science and Technology of Advanced Materials, 18(1), 187-196. doi:10.1080/14686996.2017.1288065 | en_US |
dc.identifier.issn | 1468-6996 | |
dc.identifier.issn | 1468-6996 | - |
dc.identifier.uri | http://doi.org/10.1080/14686996.2017.1288065 | |
dc.identifier.uri | http://hdl.handle.net/11147/6266 | |
dc.description.abstract | Various theoretical and experimental methods are utilized to investigate the thermal conductivity of nanostructured materials; this is a critical parameter to increase performance of thermoelectric devices. Among these methods, equilibrium molecular dynamics (EMD) is an accurate technique to predict lattice thermal conductivity. In this study, by means of systematic EMD simulations, thermal conductivity of bulk Si-Ge structures (pristine, alloy and superlattice) and their nanostructured one dimensional forms with square and circular cross-section geometries (asymmetric and symmetric) are calculated for different crystallographic directions. A comprehensive temperature analysis is evaluated for selected structures as well. The results show that one-dimensional structures are superior candidates in terms of their low lattice thermal conductivity and thermal conductivity tunability by nanostructuring, such as by diameter modulation, interface roughness, periodicity and number of interfaces. We find that thermal conductivity decreases with smaller diameters or cross section areas. Furthermore, interface roughness decreases thermal conductivity with a profound impact. Moreover, we predicted that there is a specific periodicity that gives minimum thermal conductivity in symmetric superlattice structures. The decreasing thermal conductivity is due to the reducing phonon movement in the system due to the effect of the number of interfaces that determine regimes of ballistic and wave transport phenomena. In some nanostructures, such as nanowire superlattices, thermal conductivity of the Si/Ge system can be reduced to nearly twice that of an amorphous silicon thermal conductivity. Additionally, it is found that one crystal orientation, < 100 >, is better than the < 111 > crystal orientation in one-dimensional and bulk SiGe systems. Our results clearly point out the importance of lattice thermal conductivity engineering in bulk and nanostructures to produce high-performance thermoelectric materials. | en_US |
dc.description.sponsorship | Scientific and Technological Research Council of Turkey (TUBITAK-113F096); Anadolu University (BAP-1306F281 -- 1407F335); Turkish Academy of Sciences (TUBA-GEBIP); International Institute of Materials for Energy Conversion (IIMEC) at Texas A M University NSF International Materials Institute (DMR 0844082) | en_US |
dc.language.iso | en | en_US |
dc.publisher | Taylor and Francis Ltd. | en_US |
dc.relation.ispartof | Science and Technology of Advanced Materials | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | Interface roughness | en_US |
dc.subject | Molecular dynamics | en_US |
dc.subject | Thermoelectric | en_US |
dc.subject | Nanowires | en_US |
dc.subject | Superlattices | en_US |
dc.title | Thermal conductivity engineering of bulk and one-dimensional Si-Ge nanoarchitectures | en_US |
dc.type | Article | en_US |
dc.authorid | TR226858 | en_US |
dc.institutionauthor | Kandemir, Ali | - |
dc.department | İzmir Institute of Technology. Materials Science and Engineering | en_US |
dc.identifier.volume | 18 | en_US |
dc.identifier.issue | 1 | en_US |
dc.identifier.startpage | 187 | en_US |
dc.identifier.endpage | 196 | en_US |
dc.identifier.wos | WOS:000405949800001 | en_US |
dc.identifier.scopus | 2-s2.0-85019108190 | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.identifier.doi | 10.1080/14686996.2017.1288065 | - |
dc.identifier.pmid | 28469733 | en_US |
dc.relation.doi | 10.1080/14686996.2017.1288065 | en_US |
dc.coverage.doi | 10.1080/14686996.2017.1288065 | en_US |
dc.identifier.wosquality | Q2 | - |
dc.identifier.scopusquality | Q1 | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.grantfulltext | open | - |
item.cerifentitytype | Publications | - |
item.fulltext | With Fulltext | - |
item.openairetype | Article | - |
item.languageiso639-1 | en | - |
Appears in Collections: | Materials Science and Engineering / Malzeme Bilimi ve Mühendisliği PubMed İndeksli Yayınlar Koleksiyonu / PubMed Indexed Publications Collection Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection |
CORE Recommender
SCOPUSTM
Citations
19
checked on Nov 22, 2024
WEB OF SCIENCETM
Citations
17
checked on Nov 23, 2024
Page view(s)
244
checked on Nov 18, 2024
Download(s)
156
checked on Nov 18, 2024
Google ScholarTM
Check
Altmetric
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.