Please use this identifier to cite or link to this item: https://hdl.handle.net/11147/6266
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKandemir, Ali-
dc.contributor.authorÖzden, Ayberk-
dc.contributor.authorÇağın, Tahir-
dc.contributor.authorSevik, Cem-
dc.date.accessioned2017-09-18T06:36:51Z
dc.date.available2017-09-18T06:36:51Z
dc.date.issued2017-01
dc.identifier.citationKandemir, A., Özden, A., Çağın, T., and Sevik, C. (2017). Thermal conductivity engineering of bulk and one-dimensional Si-Ge nanoarchitectures. Science and Technology of Advanced Materials, 18(1), 187-196. doi:10.1080/14686996.2017.1288065en_US
dc.identifier.issn1468-6996
dc.identifier.issn1468-6996-
dc.identifier.urihttp://doi.org/10.1080/14686996.2017.1288065
dc.identifier.urihttp://hdl.handle.net/11147/6266
dc.description.abstractVarious theoretical and experimental methods are utilized to investigate the thermal conductivity of nanostructured materials; this is a critical parameter to increase performance of thermoelectric devices. Among these methods, equilibrium molecular dynamics (EMD) is an accurate technique to predict lattice thermal conductivity. In this study, by means of systematic EMD simulations, thermal conductivity of bulk Si-Ge structures (pristine, alloy and superlattice) and their nanostructured one dimensional forms with square and circular cross-section geometries (asymmetric and symmetric) are calculated for different crystallographic directions. A comprehensive temperature analysis is evaluated for selected structures as well. The results show that one-dimensional structures are superior candidates in terms of their low lattice thermal conductivity and thermal conductivity tunability by nanostructuring, such as by diameter modulation, interface roughness, periodicity and number of interfaces. We find that thermal conductivity decreases with smaller diameters or cross section areas. Furthermore, interface roughness decreases thermal conductivity with a profound impact. Moreover, we predicted that there is a specific periodicity that gives minimum thermal conductivity in symmetric superlattice structures. The decreasing thermal conductivity is due to the reducing phonon movement in the system due to the effect of the number of interfaces that determine regimes of ballistic and wave transport phenomena. In some nanostructures, such as nanowire superlattices, thermal conductivity of the Si/Ge system can be reduced to nearly twice that of an amorphous silicon thermal conductivity. Additionally, it is found that one crystal orientation, < 100 >, is better than the < 111 > crystal orientation in one-dimensional and bulk SiGe systems. Our results clearly point out the importance of lattice thermal conductivity engineering in bulk and nanostructures to produce high-performance thermoelectric materials.en_US
dc.description.sponsorshipScientific and Technological Research Council of Turkey (TUBITAK-113F096); Anadolu University (BAP-1306F281 -- 1407F335); Turkish Academy of Sciences (TUBA-GEBIP); International Institute of Materials for Energy Conversion (IIMEC) at Texas A M University NSF International Materials Institute (DMR 0844082)en_US
dc.language.isoenen_US
dc.publisherTaylor and Francis Ltd.en_US
dc.relation.ispartofScience and Technology of Advanced Materialsen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectInterface roughnessen_US
dc.subjectMolecular dynamicsen_US
dc.subjectThermoelectricen_US
dc.subjectNanowiresen_US
dc.subjectSuperlatticesen_US
dc.titleThermal conductivity engineering of bulk and one-dimensional Si-Ge nanoarchitecturesen_US
dc.typeArticleen_US
dc.authoridTR226858en_US
dc.institutionauthorKandemir, Ali-
dc.departmentİzmir Institute of Technology. Materials Science and Engineeringen_US
dc.identifier.volume18en_US
dc.identifier.issue1en_US
dc.identifier.startpage187en_US
dc.identifier.endpage196en_US
dc.identifier.wosWOS:000405949800001en_US
dc.identifier.scopus2-s2.0-85019108190en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.doi10.1080/14686996.2017.1288065-
dc.identifier.pmid28469733en_US
dc.relation.doi10.1080/14686996.2017.1288065en_US
dc.coverage.doi10.1080/14686996.2017.1288065en_US
dc.identifier.wosqualityQ1-
dc.identifier.scopusqualityQ1-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.fulltextWith Fulltext-
item.languageiso639-1en-
item.grantfulltextopen-
item.openairetypeArticle-
Appears in Collections:Materials Science and Engineering / Malzeme Bilimi ve Mühendisliği
PubMed İndeksli Yayınlar Koleksiyonu / PubMed Indexed Publications Collection
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File Description SizeFormat 
6266.pdfMakale1.47 MBAdobe PDFThumbnail
View/Open
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

18
checked on Apr 5, 2024

WEB OF SCIENCETM
Citations

16
checked on Mar 27, 2024

Page view(s)

164
checked on Apr 15, 2024

Download(s)

136
checked on Apr 15, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.