Please use this identifier to cite or link to this item: https://hdl.handle.net/11147/5993
Title: Instance Detection by Keypoint Matching Beyond the Nearest Neighbor
Authors: Uzyıldırım, Furkan Eren
Özuysal, Mustafa
Keywords: Computer vision
Keypoint matching
Object detection
Publisher: Springer Verlag
Source: Uzyıldırım, F. E., and Özuysal, M. (2016). Instance detection by keypoint matching beyond the nearest neighbor. Signal, Image and Video Processing, 10(8), 1527-1534. doi:10.1007/s11760-016-0966-6
Abstract: The binary descriptors are the representation of choice for real-time keypoint matching. However, they suffer from reduced matching rates due to their discrete nature. We propose an approach that can augment their performance by searching in the top K near neighbor matches instead of just the single nearest neighbor one. To pick the correct match out of the K near neighbors, we exploit statistics of descriptor variations collected for each keypoint in an off-line training phase. This is a similar approach to those that learn a patch specific keypoint representation. Unlike these approaches, we only use a keypoint specific score to rank the list of K near neighbors. Since this list can be efficiently computed with approximate nearest neighbor algorithms, our approach scales well to large descriptor sets.
URI: http://doi.org/10.1007/s11760-016-0966-6
http://hdl.handle.net/11147/5993
ISSN: 1863-1703
1863-1711
Appears in Collections:Computer Engineering / Bilgisayar Mühendisliği
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection

Files in This Item:
File Description SizeFormat 
5993.pdfMakale834.47 kBAdobe PDFThumbnail
View/Open
Show full item record



CORE Recommender

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.