Please use this identifier to cite or link to this item:
https://hdl.handle.net/11147/5993
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Uzyıldırım, Furkan Eren | - |
dc.contributor.author | Özuysal, Mustafa | - |
dc.date.accessioned | 2017-07-21T13:32:02Z | - |
dc.date.available | 2017-07-21T13:32:02Z | - |
dc.date.issued | 2016-11-01 | - |
dc.identifier.citation | Uzyıldırım, F. E., and Özuysal, M. (2016). Instance detection by keypoint matching beyond the nearest neighbor. Signal, Image and Video Processing, 10(8), 1527-1534. doi:10.1007/s11760-016-0966-6 | en_US |
dc.identifier.issn | 1863-1703 | - |
dc.identifier.issn | 1863-1711 | - |
dc.identifier.uri | http://doi.org/10.1007/s11760-016-0966-6 | - |
dc.identifier.uri | http://hdl.handle.net/11147/5993 | - |
dc.description.abstract | The binary descriptors are the representation of choice for real-time keypoint matching. However, they suffer from reduced matching rates due to their discrete nature. We propose an approach that can augment their performance by searching in the top K near neighbor matches instead of just the single nearest neighbor one. To pick the correct match out of the K near neighbors, we exploit statistics of descriptor variations collected for each keypoint in an off-line training phase. This is a similar approach to those that learn a patch specific keypoint representation. Unlike these approaches, we only use a keypoint specific score to rank the list of K near neighbors. Since this list can be efficiently computed with approximate nearest neighbor algorithms, our approach scales well to large descriptor sets. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Springer Verlag | en_US |
dc.relation.ispartof | Signal, Image and Video Processing | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | Computer vision | en_US |
dc.subject | Keypoint matching | en_US |
dc.subject | Object detection | en_US |
dc.title | Instance Detection by Keypoint Matching Beyond the Nearest Neighbor | en_US |
dc.type | Article | en_US |
dc.authorid | TR226979 | en_US |
dc.authorid | TR21345 | en_US |
dc.institutionauthor | Uzyıldırım, Furkan Eren | - |
dc.institutionauthor | Özuysal, Mustafa | - |
dc.department | İzmir Institute of Technology. Computer Engineering | en_US |
dc.identifier.volume | 10 | en_US |
dc.identifier.issue | 8 | en_US |
dc.identifier.startpage | 1527 | en_US |
dc.identifier.endpage | 1534 | en_US |
dc.identifier.wos | WOS:000384592600020 | en_US |
dc.identifier.scopus | 2-s2.0-84982288436 | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.identifier.doi | 10.1007/s11760-016-0966-6 | - |
dc.relation.doi | 10.1007/s11760-016-0966-6 | en_US |
dc.coverage.doi | 10.1007/s11760-016-0966-6 | en_US |
dc.identifier.wosquality | Q3 | - |
dc.identifier.scopusquality | Q2 | - |
item.grantfulltext | open | - |
item.languageiso639-1 | en | - |
item.openairetype | Article | - |
item.cerifentitytype | Publications | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.fulltext | With Fulltext | - |
crisitem.author.dept | 01.01. Units Affiliated to the Rectorate | - |
crisitem.author.dept | 03.04. Department of Computer Engineering | - |
Appears in Collections: | Computer Engineering / Bilgisayar Mühendisliği Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection |
CORE Recommender
SCOPUSTM
Citations
5
checked on Dec 20, 2024
WEB OF SCIENCETM
Citations
5
checked on Dec 7, 2024
Page view(s)
64,822
checked on Dec 23, 2024
Download(s)
348
checked on Dec 23, 2024
Google ScholarTM
Check
Altmetric
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.