Please use this identifier to cite or link to this item: https://hdl.handle.net/11147/5993
Full metadata record
DC FieldValueLanguage
dc.contributor.authorUzyıldırım, Furkan Eren-
dc.contributor.authorÖzuysal, Mustafa-
dc.date.accessioned2017-07-21T13:32:02Z-
dc.date.available2017-07-21T13:32:02Z-
dc.date.issued2016-11-01-
dc.identifier.citationUzyıldırım, F. E., and Özuysal, M. (2016). Instance detection by keypoint matching beyond the nearest neighbor. Signal, Image and Video Processing, 10(8), 1527-1534. doi:10.1007/s11760-016-0966-6en_US
dc.identifier.issn1863-1703-
dc.identifier.issn1863-1711-
dc.identifier.urihttp://doi.org/10.1007/s11760-016-0966-6-
dc.identifier.urihttp://hdl.handle.net/11147/5993-
dc.description.abstractThe binary descriptors are the representation of choice for real-time keypoint matching. However, they suffer from reduced matching rates due to their discrete nature. We propose an approach that can augment their performance by searching in the top K near neighbor matches instead of just the single nearest neighbor one. To pick the correct match out of the K near neighbors, we exploit statistics of descriptor variations collected for each keypoint in an off-line training phase. This is a similar approach to those that learn a patch specific keypoint representation. Unlike these approaches, we only use a keypoint specific score to rank the list of K near neighbors. Since this list can be efficiently computed with approximate nearest neighbor algorithms, our approach scales well to large descriptor sets.en_US
dc.language.isoenen_US
dc.publisherSpringer Verlagen_US
dc.relation.ispartofSignal, Image and Video Processingen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectComputer visionen_US
dc.subjectKeypoint matchingen_US
dc.subjectObject detectionen_US
dc.titleInstance Detection by Keypoint Matching Beyond the Nearest Neighboren_US
dc.typeArticleen_US
dc.authoridTR226979en_US
dc.authoridTR21345en_US
dc.institutionauthorUzyıldırım, Furkan Eren-
dc.institutionauthorÖzuysal, Mustafa-
dc.departmentİzmir Institute of Technology. Computer Engineeringen_US
dc.identifier.volume10en_US
dc.identifier.issue8en_US
dc.identifier.startpage1527en_US
dc.identifier.endpage1534en_US
dc.identifier.wosWOS:000384592600020en_US
dc.identifier.scopus2-s2.0-84982288436en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.doi10.1007/s11760-016-0966-6-
dc.relation.doi10.1007/s11760-016-0966-6en_US
dc.coverage.doi10.1007/s11760-016-0966-6en_US
dc.identifier.wosqualityQ3-
dc.identifier.scopusqualityQ2-
item.grantfulltextopen-
item.languageiso639-1en-
item.openairetypeArticle-
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
crisitem.author.dept01.01. Units Affiliated to the Rectorate-
crisitem.author.dept03.04. Department of Computer Engineering-
Appears in Collections:Computer Engineering / Bilgisayar Mühendisliği
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File Description SizeFormat 
5993.pdfMakale834.47 kBAdobe PDFThumbnail
View/Open
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

5
checked on Dec 20, 2024

WEB OF SCIENCETM
Citations

5
checked on Dec 7, 2024

Page view(s)

64,822
checked on Dec 23, 2024

Download(s)

348
checked on Dec 23, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.