Please use this identifier to cite or link to this item: https://hdl.handle.net/11147/5643
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSaçar, Müşerref Duygu-
dc.contributor.authorAllmer, Jens-
dc.date.accessioned2017-05-30T10:48:10Z-
dc.date.available2017-05-30T10:48:10Z-
dc.date.issued2014-
dc.identifier.citationSaçar, M. D., and Allmer, J. (2014). Machine learning methods for microRNA gene prediction. Methods in Molecular Biology, 1107, 177-187. doi:10.1007/978-1-62703-748-8-10en_US
dc.identifier.issn1940-6029-
dc.identifier.issn1064-3745-
dc.identifier.urihttp://hdl.handle.net/11147/5643-
dc.identifier.urihttp://doi.org/10.1007/978-1-62703-748-8_10-
dc.description.abstractMicroRNAs (miRNAs) are single-stranded, small, noncoding RNAs of about 22 nucleotides in length, which control gene expression at the posttranscriptional level through translational inhibition, degradation, adenylation, or destabilization of their target mRNAs. Although hundreds of miRNAs have been identified in various species, many more may still remain unknown. Therefore, discovery of new miRNA genes is an important step for understanding miRNA-mediated posttranscriptional regulation mechanisms. It seems that biological approaches to identify miRNA genes might be limited in their ability to detect rare miRNAs and are further limited to the tissues examined and the developmental stage of the organism under examination. These limitations have led to the development of sophisticated computational approaches attempting to identify possible miRNAs in silico. In this chapter, we discuss computational problems in miRNA prediction studies and review some of the many machine learning methods that have been tried to address the issues.en_US
dc.description.sponsorshipTurkish Academy of Sciencesen_US
dc.language.isoenen_US
dc.publisherHumana Pressen_US
dc.relation.ispartofMethods in Molecular Biologyen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectMicroRNAsen_US
dc.subjectArtificial intelligenceen_US
dc.subjectAlgorithmsen_US
dc.subjectGenesen_US
dc.subjectMachine learningen_US
dc.subjectClassificationen_US
dc.titleMachine learning methods for microRNA gene predictionen_US
dc.typeArticleen_US
dc.institutionauthorSaçar, Müşerref Duygu-
dc.institutionauthorAllmer, Jens-
dc.departmentİzmir Institute of Technology. Molecular Biology and Geneticsen_US
dc.identifier.volume1107en_US
dc.identifier.startpage177en_US
dc.identifier.endpage187en_US
dc.identifier.wosWOS:000329167800011en_US
dc.identifier.scopus2-s2.0-84891774362en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.doi10.1007/978-1-62703-748-8-10-
dc.identifier.pmid24272437en_US
dc.relation.doi10.1007/978-1-62703-748-8-10en_US
dc.coverage.doi10.1007/978-1-62703-748-8-10en_US
dc.identifier.wosqualityN/A-
dc.identifier.scopusqualityQ4-
item.fulltextWith Fulltext-
item.grantfulltextopen-
item.languageiso639-1en-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.openairetypeArticle-
crisitem.author.dept04.03. Department of Molecular Biology and Genetics-
Appears in Collections:Molecular Biology and Genetics / Moleküler Biyoloji ve Genetik
PubMed İndeksli Yayınlar Koleksiyonu / PubMed Indexed Publications Collection
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File Description SizeFormat 
5643.pdfMakale233.37 kBAdobe PDFThumbnail
View/Open
Show simple item record



CORE Recommender

WEB OF SCIENCETM
Citations

28
checked on Nov 9, 2024

Page view(s)

376
checked on Nov 18, 2024

Download(s)

348
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.