Please use this identifier to cite or link to this item:
https://hdl.handle.net/11147/5536
Title: | A New Proton Sponge Polymer Synthesized by Raft Polymerization for Intracellular Delivery of Biotherapeutics | Authors: | Kurtuluş, Işıl Yılmaz, Gökhan Üçüncü, Muhammed Emrullahoğlu, Mustafa Becer, C. Remzi Bulmuş, Volga |
Keywords: | DNA Electrophoresis Living polymerization Monomers Polymers |
Publisher: | Royal Society of Chemistry | Source: | Kurtuluş, I., Yılmaz, G., Üçüncü, M., Emrullahoğlu, M., Becer, C.R., and Bulmuş, V. (2014). A new proton sponge polymer synthesized by RAFT polymerization for intracellular delivery of biotherapeutics. Polymer Chemistry, 5(5),1593-1604. doi:10.1039/c3py01244a | Abstract: | A spermine-like polymer was synthesized via reversible addition- fragmentation chain transfer polymerization as a potential endosomal escaping agent. A new methacrylate monomer, 2-((tert-butoxycarbonyl)(2-((tert- butoxycarbonyl)amino)ethyl)amino)ethylmethacrylate (BocAEAEMA), was prepared and then polymerized via RAFT polymerization at constant monomer or initiator concentration at varying [M]/[R]/[I] ratios. In all polymerizations, ln[M] 0/[M] increased linearly with time. The linear increase in M n with monomer conversion was also observed. P(BocAEAEMA)s with controlled molecular weights and narrow molecular weight distributions were obtained. The in vitro cytotoxicity and proton sponge capacity of deprotected polymers P(AEAEMA) were investigated in comparison with a widely used endosomal-disruptive polymer, PEI. P(AEAEMA)s were found to possess proton sponge capacity comparable with PEI. More importantly, P(AEAEMA)s were not toxic on NIH 3T3 cells at concentrations where PEI (25 kDa) was highly toxic (0.4 μM and above). P(AEAEMA) was able to fully condense a DNA fragment at nitrogen/phosphate (N/P) ratios of 10 and above, as evidenced by gel electrophoresis. P(BocAEAEMA) was then chain-extended with a model sugar monomer, mannose-acrylate (ManAc), to yield P(AEAEMA)-b-P(ManAc) block copolymers, to potentially provide cell-recognition ability to the polyplex particles. Although the presence of the P(ManAc) block partially inhibited the interaction of P(AEAEMA) with DNA, P(AEAEMA)13-b-P(ManAc)7 was able to form polyplexes with DNA at N/P ratios ranging between 20/1 and 2/1. Dynamic light scattering measurements showed that while P(AEAEMA) (M n = 5.5 kDa) and DNA formed polyplex particles having a hydrodynamic diameter (Dh) of 125 ± 51 nm, P(AEAEMA)13-b- P(ManAc)7 and DNA formed particles with a smaller Dh of 38 ± 10 nm. | URI: | https://doi.org/10.1039/c3py01244a http://hdl.handle.net/11147/5536 |
ISSN: | 1759-9954 1759-9962 |
Appears in Collections: | Chemical Engineering / Kimya Mühendisliği Chemistry / Kimya Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection |
Show full item record
CORE Recommender
SCOPUSTM
Citations
20
checked on Dec 20, 2024
WEB OF SCIENCETM
Citations
18
checked on Nov 23, 2024
Page view(s)
456
checked on Dec 16, 2024
Download(s)
410
checked on Dec 16, 2024
Google ScholarTM
Check
Altmetric
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.