Please use this identifier to cite or link to this item: https://hdl.handle.net/11147/5250
Full metadata record
DC FieldValueLanguage
dc.contributor.authorDemirci, Müşerref Duygu Saçar-
dc.contributor.authorHamzeiy, Hamid-
dc.contributor.authorAllmer, Jens-
dc.date.accessioned2017-04-07T07:40:38Z
dc.date.available2017-04-07T07:40:38Z
dc.date.issued2013
dc.identifier.citationSaçar, M. D., Hamzeiy, H., and Allmer, J. (2013). Can MiRBase provide positive data for machine learning for the detection of MiRNA hairpins? Journal of integrative bioinformatics, 10(2). doi:10.2390/biecoll-jib-2013-215en_US
dc.identifier.issn1613-4516
dc.identifier.issn1613-4516-
dc.identifier.urihttp://doi.org/10.2390/biecoll-jib-2013-215
dc.identifier.urihttp://hdl.handle.net/11147/5250
dc.description.abstractExperimental detection and validation of miRNAs is a tedious, time-consuming, and expensive process. Computational methods for miRNA gene detection are being developed so that the number of candidates that need experimental validation can be reduced to a manageable amount. Computational methods involve homology-based and ab inito algorithms. Both approaches are dependent on positive and negative training examples. Positive examples are usually derived from miRBase, the main resource for experimentally validated miRNAs. We encountered some problems with miRBase which we would like to report here. Some problems, among others, we encountered are that folds presented in miRBase are not always the fold with the minimum free energy; some entries do not seem to conform to expectations of miRNAs, and some external accession numbers are not valid. In addition, we compared the prediction accuracy for the same negative dataset when the positive data came from miRBase or miRTarBase and found that the latter led to more precise prediction models. We suggest that miRBase should introduce some automated facilities for ensuring data quality to overcome these problems.en_US
dc.language.isoenen_US
dc.publisherInformationsmanagement in der Biotechnologie e.V. (IMBio e.V.)en_US
dc.relation.ispartofJournal of Integrative Bioinformaticsen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectMicroRNAsen_US
dc.subjectSequence alignmenten_US
dc.subjectMolecular sequence dataen_US
dc.subjectNucleic aciden_US
dc.subjectDatabasesen_US
dc.titleCan MiRBase provide positive data for machine learning for the detection of MiRNA hairpins?en_US
dc.typeArticleen_US
dc.authoridTR114170en_US
dc.authoridTR107974en_US
dc.institutionauthorDemirci, Müşerref Duygu Saçar-
dc.institutionauthorHamzeiy, Hamid-
dc.institutionauthorAllmer, Jens-
dc.departmentİzmir Institute of Technology. Molecular Biology and Geneticsen_US
dc.identifier.volume10en_US
dc.identifier.issue2en_US
dc.identifier.wosWOS:000219961200001en_US
dc.identifier.scopus2-s2.0-84891760538en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.doi10.2390/biecoll-jib-2013-215-
dc.identifier.pmid23525896en_US
dc.relation.doi10.2390/biecoll-jib-2013-215en_US
dc.coverage.doi10.2390/biecoll-jib-2013-215en_US
dc.identifier.wosqualityN/A-
dc.identifier.scopusqualityQ2-
item.fulltextWith Fulltext-
item.grantfulltextopen-
item.languageiso639-1en-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.openairetypeArticle-
crisitem.author.dept04.03. Department of Molecular Biology and Genetics-
Appears in Collections:Molecular Biology and Genetics / Moleküler Biyoloji ve Genetik
PubMed İndeksli Yayınlar Koleksiyonu / PubMed Indexed Publications Collection
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File Description SizeFormat 
5250.pdfMakale785.57 kBAdobe PDFThumbnail
View/Open
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

21
checked on Nov 15, 2024

WEB OF SCIENCETM
Citations

25
checked on Nov 9, 2024

Page view(s)

1,086
checked on Nov 18, 2024

Download(s)

986
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.