Please use this identifier to cite or link to this item:
https://hdl.handle.net/11147/2490
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Tokatlı, Figen | - |
dc.contributor.author | Tarı, Canan | - |
dc.contributor.author | Ünlütürk, Mehmet | - |
dc.contributor.author | Göğüş, Nihan | - |
dc.date.accessioned | 2016-11-22T08:44:25Z | |
dc.date.available | 2016-11-22T08:44:25Z | |
dc.date.issued | 2009-09 | |
dc.identifier.citation | Tokatlı, F., Tarı, C., Ünlütürk, M., and Göğüş, N. (2009). Modeling of polygalacturonase enzyme activity and biomass production by aspergillus sojae ATCC 20235. Journal of Industrial Microbiology and Biotechnology, 36(9), 1139-1148. doi:10.1007/s10295-009-0595-y | en_US |
dc.identifier.issn | 1367-5435 | |
dc.identifier.issn | 1367-5435 | - |
dc.identifier.uri | http://dx.doi.org/10.1007/s10295-009-0595-y | |
dc.identifier.uri | http://hdl.handle.net/11147/2490 | |
dc.description.abstract | Aspergillus sojae, which is used in the making of koji, a characteristic Japanese food, is a potential candidate for the production of polygalacturonase (PG) enzyme, which of a major industrial significance. In this study, fermentation data of an A. sojae system were modeled by multiple linear regression (MLR) and artificial neural network (ANN) approaches to estimate PG activity and biomass. Nutrient concentrations, agitation speed, inoculum ratio and final pH of the fermentation medium were used as the inputs of the system. In addition to nutrient conditions, the final pH of the fermentation medium was also shown to be an effective parameter in the estimation of biomass concentration. The ANN parameters, such as number of hidden neurons, epochs and learning rate, were determined using a statistical approach. In the determination of network architecture, a cross-validation technique was used to test the ANN models. Goodness-of-fit of the regression and ANN models was measured by the R 2 of cross-validated data and squared error of prediction. The PG activity and biomass were modeled with a 5-2-1 and 5-9-1 network topology, respectively. The models predicted enzyme activity with an R 2 of 0.84 and biomass with an R 2 value of 0.83, whereas the regression models predicted enzyme activity with an R 2 of 0.84 and biomass with an R 2 of 0.69. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Springer Verlag | en_US |
dc.relation.ispartof | Journal of Industrial Microbiology and Biotechnology | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | Artificial intelligence | en_US |
dc.subject | Cross-validation | en_US |
dc.subject | Filamentous fungi | en_US |
dc.subject | Polygalacturonase production | en_US |
dc.subject | Submerged culture | en_US |
dc.title | Modeling of polygalacturonase enzyme activity and biomass production by aspergillus sojae ATCC 20235 | en_US |
dc.type | Article | en_US |
dc.authorid | TR44047 | en_US |
dc.authorid | TR130613 | en_US |
dc.institutionauthor | Tokatlı, Figen | - |
dc.institutionauthor | Tarı, Canan | - |
dc.institutionauthor | Göğüş, Nihan | - |
dc.department | İzmir Institute of Technology. Food Engineering | en_US |
dc.identifier.volume | 36 | en_US |
dc.identifier.issue | 9 | en_US |
dc.identifier.startpage | 1139 | en_US |
dc.identifier.endpage | 1148 | en_US |
dc.identifier.wos | WOS:000269193600002 | en_US |
dc.identifier.scopus | 2-s2.0-69249220246 | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.identifier.doi | 10.1007/s10295-009-0595-y | - |
dc.identifier.pmid | 19479289 | en_US |
dc.relation.doi | 10.1007/s10295-009-0595-y | en_US |
dc.coverage.doi | 10.1007/s10295-009-0595-y | en_US |
local.message.claim | 2022-06-07T13:28:54.662+0300 | * |
local.message.claim | |rp02310 | * |
local.message.claim | |submit_approve | * |
local.message.claim | |dc_contributor_author | * |
local.message.claim | |None | * |
dc.identifier.wosquality | Q2 | - |
dc.identifier.scopusquality | Q2 | - |
item.openairetype | Article | - |
item.grantfulltext | open | - |
item.cerifentitytype | Publications | - |
item.languageiso639-1 | en | - |
item.fulltext | With Fulltext | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
crisitem.author.dept | 03.08. Department of Food Engineering | - |
crisitem.author.dept | 03.08. Department of Food Engineering | - |
Appears in Collections: | Food Engineering / Gıda Mühendisliği PubMed İndeksli Yayınlar Koleksiyonu / PubMed Indexed Publications Collection Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection |
CORE Recommender
SCOPUSTM
Citations
9
checked on Sep 13, 2024
WEB OF SCIENCETM
Citations
8
checked on Sep 14, 2024
Page view(s)
248
checked on Sep 2, 2024
Download(s)
324
checked on Sep 2, 2024
Google ScholarTM
Check
Altmetric
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.