Please use this identifier to cite or link to this item:
https://hdl.handle.net/11147/2179
Title: | Artificial neural network predictions of polycyclic aromatic hydrocarbon formation in premixed n-heptane flames | Authors: | İnal, Fikret | Keywords: | Polycyclic aromatic hydrocarbons Neural network PAHs Premixed flame |
Publisher: | Elsevier Ltd. | Source: | İnal, F. (2006). Artificial neural network predictions of polycyclic aromatic hydrocarbon formation in premixed n-heptane flames. Fuel Processing Technology, 87(11), 1031-1036. doi:10.1016/j.fuproc.2006.08.002 | Abstract: | Polycyclic aromatic hydrocarbon formation in combustion systems has received considerable attention because of its health effects. The feed-forward, multi-layer perceptron type artificial neural networks with back-propagation learning were used to predict the total PAH amount in atmospheric pressure, premixed n-heptane and n-heptane/oxygenate flames. MTBE and ethanol were used as fuel oxygenates. The total fifty-four data sets were divided into three groups: training, cross-validation, and testing. The different network architectures were tested and the best predictions were obtained for a network of one hidden layer with five neurons. The transfer function was sigmoid function. The mean square and mean absolute errors were 10.52 and 2.60 ppm for the testing set, respectively. The correlation coefficient (R2) was 0.98. The results also showed that the total PAH amount was significantly influenced by the changes in equivalence ratio, presence of fuel oxygenates, and mole fractions of C4 species. | URI: | http://doi.org/10.1016/j.fuproc.2006.08.002 http://hdl.handle.net/11147/2179 |
ISSN: | 0378-3820 0378-3820 |
Appears in Collections: | Chemical Engineering / Kimya Mühendisliği Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection |
Show full item record
CORE Recommender
SCOPUSTM
Citations
22
checked on Nov 15, 2024
WEB OF SCIENCETM
Citations
18
checked on Nov 16, 2024
Page view(s)
276
checked on Nov 18, 2024
Download(s)
320
checked on Nov 18, 2024
Google ScholarTM
Check
Altmetric
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.