Please use this identifier to cite or link to this item: https://hdl.handle.net/11147/2179
Full metadata record
DC FieldValueLanguage
dc.contributor.authorİnal, Fikret-
dc.date.accessioned2016-10-07T07:00:35Z
dc.date.available2016-10-07T07:00:35Z
dc.date.issued2006-11
dc.identifier.citationİnal, F. (2006). Artificial neural network predictions of polycyclic aromatic hydrocarbon formation in premixed n-heptane flames. Fuel Processing Technology, 87(11), 1031-1036. doi:10.1016/j.fuproc.2006.08.002en_US
dc.identifier.issn0378-3820
dc.identifier.issn0378-3820-
dc.identifier.urihttp://doi.org/10.1016/j.fuproc.2006.08.002
dc.identifier.urihttp://hdl.handle.net/11147/2179
dc.description.abstractPolycyclic aromatic hydrocarbon formation in combustion systems has received considerable attention because of its health effects. The feed-forward, multi-layer perceptron type artificial neural networks with back-propagation learning were used to predict the total PAH amount in atmospheric pressure, premixed n-heptane and n-heptane/oxygenate flames. MTBE and ethanol were used as fuel oxygenates. The total fifty-four data sets were divided into three groups: training, cross-validation, and testing. The different network architectures were tested and the best predictions were obtained for a network of one hidden layer with five neurons. The transfer function was sigmoid function. The mean square and mean absolute errors were 10.52 and 2.60 ppm for the testing set, respectively. The correlation coefficient (R2) was 0.98. The results also showed that the total PAH amount was significantly influenced by the changes in equivalence ratio, presence of fuel oxygenates, and mole fractions of C4 species.en_US
dc.description.sponsorshipİzmir Institute of Technologyen_US
dc.language.isoenen_US
dc.publisherElsevier Ltd.en_US
dc.relation.ispartofFuel Processing Technologyen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectPolycyclic aromatic hydrocarbonsen_US
dc.subjectNeural networken_US
dc.subjectPAHsen_US
dc.subjectPremixed flameen_US
dc.titleArtificial neural network predictions of polycyclic aromatic hydrocarbon formation in premixed n-heptane flamesen_US
dc.typeArticleen_US
dc.authoridTR30587en_US
dc.institutionauthorİnal, Fikret-
dc.departmentİzmir Institute of Technology. Chemical Engineeringen_US
dc.identifier.volume87en_US
dc.identifier.issue11en_US
dc.identifier.startpage1031en_US
dc.identifier.endpage1036en_US
dc.identifier.wosWOS:000241960300011en_US
dc.identifier.scopus2-s2.0-33749645839en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.doi10.1016/j.fuproc.2006.08.002-
dc.relation.doi10.1016/j.fuproc.2006.08.002en_US
dc.coverage.doi10.1016/j.fuproc.2006.08.002en_US
dc.identifier.wosqualityQ1-
dc.identifier.scopusqualityQ1-
item.fulltextWith Fulltext-
item.grantfulltextopen-
item.languageiso639-1en-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.openairetypeArticle-
crisitem.author.dept03.02. Department of Chemical Engineering-
Appears in Collections:Chemical Engineering / Kimya Mühendisliği
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File Description SizeFormat 
2179.pdfMakale268.18 kBAdobe PDFThumbnail
View/Open
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

22
checked on Nov 15, 2024

WEB OF SCIENCETM
Citations

18
checked on Nov 16, 2024

Page view(s)

276
checked on Nov 18, 2024

Download(s)

320
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.