Realtime Access Map
Tailored CeO2 nanoparticles surface in free radical bulk polymerization of methyl methacrylate
Abstract
Polymerization of monomer/nanoparticle dispersion, namely in situ polymerization, has been frequently used for the fabrication of polymer nanocomposites. However, the interference of nanoparticle surface with polymerization in the course of composite formation has been tacitly neglected. In this work, surface-functionalized ceria nanoparticles were prepared using various capping agents: 3-(mercaptopropyl) trimethoxy silane, thioglycolic acid, 3-mercaptopropionic acid, and hexadecyltrimethyl ammonium bromide. Both in situ and ex situ approaches were applied for surface functionalization. The particles were dispersed into methyl methacrylate and free radical polymerization was carried out. The process of nanocomposite formation was examined in terms of conversion, molecular weight, and molecular weight distribution. The polymerization responded merely to the in situ functionalized particles. Regardless of the capping agents used, the particles function as a retarder and inhibitor. Their interaction with polymerization medium showed many complexities such that molecular weight was found to be strongly dependent on the capping agent employed.