Please use this identifier to cite or link to this item: https://hdl.handle.net/11147/15326
Full metadata record
DC FieldValueLanguage
dc.contributor.authorYalcin, Damla-
dc.contributor.authorDeliismail, Ozgun-
dc.contributor.authorTuncer, Basak-
dc.contributor.authorBoy, Onur Can-
dc.contributor.authorBayar, Ibrahim-
dc.contributor.authorKayar, Gizem-
dc.contributor.authorSildir, Hasan-
dc.date.accessioned2025-02-05T09:52:48Z-
dc.date.available2025-02-05T09:52:48Z-
dc.date.issued2025-
dc.identifier.issn0009-2509-
dc.identifier.issn1873-4405-
dc.identifier.urihttps://doi.org/10.1016/j.ces.2025.121210-
dc.descriptionYalcin, Damla/0000-0002-8881-5049en_US
dc.description.abstractCurrent sustainable production and consumption processes call for technological integration with the realm of computational modeling especially in the form of sophisticated data-driven architectures. Advanced mathematical formulations are essential for deep learning approach to account for revealing patterns under nonlinear and complex interactions to enable better prediction capabilities for subsequent optimization and control tasks. Bayesian Information Criterion and Akaike Information Criterion are introduced as additional constraints to a mixed-integer training problem which employs a parameter sensitivity related objective function, unlike traditional methods which minimize the training error under fixed architecture. The resulting comprehensive optimization formulation is flexible as a simultaneous approach is introduced through algorithmic differentiation to benefit from advanced solvers to handle computational challenges and theoretical issues. Proposed formulation delivers 40% reduction, in architecture with high accuracy. The performance of the approach is compared to fully connected traditional methods on two different case studies from large scale chemical plants.en_US
dc.language.isoenen_US
dc.publisherPergamon-elsevier Science Ltden_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectMixed-Integer Programmingen_US
dc.subjectDeep Learningen_US
dc.subjectInput Selectionen_US
dc.subjectWeight Sensitivityen_US
dc.subjectBayesian Information Criterionen_US
dc.subjectAkaike Information Criterionen_US
dc.titleAutomated Deep Learning Model Development Based on Weight Sensitivity and Model Selection Statisticsen_US
dc.typeArticleen_US
dc.authoridYalcin, Damla/0000-0002-8881-5049-
dc.departmentİzmir Institute of Technologyen_US
dc.identifier.volume306en_US
dc.identifier.wosWOS:001411944300001-
dc.identifier.scopus2-s2.0-85216118248-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.doi10.1016/j.ces.2025.121210-
dc.identifier.wosqualityQ2-
dc.identifier.scopusqualityQ1-
dc.description.woscitationindexScience Citation Index Expanded-
item.fulltextWith Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.languageiso639-1en-
item.grantfulltextopen-
item.openairetypeArticle-
item.cerifentitytypePublications-
crisitem.author.dept03.02. Department of Chemical Engineering-
Appears in Collections:Chemical Engineering / Kimya Mühendisliği
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File SizeFormat 
15326.pdf3.53 MBAdobe PDFView/Open
Show simple item record



CORE Recommender

Page view(s)

158
checked on Jul 21, 2025

Download(s)

24
checked on Jul 21, 2025

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.