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A B S T R A C T

Current sustainable production and consumption processes call for technological integration with the realm of
computational modeling especially in the form of sophisticated data-driven architectures. Advanced mathe-
matical formulations are essential for deep learning approach to account for revealing patterns under nonlinear
and complex interactions to enable better prediction capabilities for subsequent optimization and control tasks.
Bayesian Information Criterion and Akaike Information Criterion are introduced as additional constraints to a
mixed-integer training problem which employs a parameter sensitivity related objective function, unlike tradi-
tional methods which minimize the training error under fixed architecture. The resulting comprehensive opti-
mization formulation is flexible as a simultaneous approach is introduced through algorithmic differentiation to
benefit from advanced solvers to handle computational challenges and theoretical issues. Proposed formulation
delivers 40% reduction, in architecture with high accuracy. The performance of the approach is compared to
fully connected traditional methods on two different case studies from large scale chemical plants.

1. Introduction

Sustainable production is a multifaceted approach to balance the
demand, environmental impact, uncertainties associated with the pro-
cess dynamics and driving forces under economic considerations. While
recent advancements in Industrial Internet of Things (IIoT) introduces
significant potential for real time analysis and decision making, a
comprehensive and plug-and-use formulation is lacked as case depen-
dent tailorization is required in theoretical perspective as nonlinearity,
complexity and causality of the data set have a wide spectrum under
complex processes (Zhang et al., 2016; Bakshi, 2019; López-Guajardo
et al., 2022). Process Intensification (PI) in chemical processes aligns
with IIoT objectives, aiming to minimize raw material use, waste
products, and energy consumption (Dantas et al., 2021). It optimizes the
value chain by transforming products back into raw materials. The
convergence of PI and Industry 4.0 presents opportunities for sustain-
able practices and new technologies. PI uses machine learning for
effective information extraction, data pattern recognition, and pre-
dictions (López-Guajardo et al., 2022). Thus, automated synthesis of the

machine learning (ML) architecture plays a crucial role in this context by
introducing more reliable predictions to favor shifts in economic, sus-
tainable, and production frameworks, thus enhancing efficiency in many
aspects (López-Guajardo et al., 2022; Dantas et al., 2021; Vinuesa et al.,
2020; Jamwal et al., 2022).

Data-drivenmodels have a major practical superiority as those reveal
the interactions between process variables with no fundamental
knowledge on process driving forces at micro scale, once trained
through sophisticated mathematical formulations to account for over-
fitting problem and input selection tasks in addition to many other nu-
merical issues. In turn, those are useful for sustainable production and
consumption processes to handle complex decision making problems
involving environmental impacts, energy efficiency, safety, and eco-
nomic viability. Deep Learning, as a branch of machine learning, is
increasingly essential in chemical engineering for managing large-scale,
complex datasets and providing insights critical for such sustainable
development tasks (López-Guajardo et al., 2022; Dantas et al. , 2021;
Vinuesa et al., 2020; Jamwal et al., 2022; Cioffi et al., 2020; Wuest et al.,
2016; Wang et al., 2018). In recent years, engineers have shown a strong
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interest for the utilization of those algorithms for modeling of complex
process networks (Dobbelaere et al., 2021; Venkatasubramanian, 2019;
Schweidtmann, 2021; Wu et al., 2023; Gao et al., 2022; Zhao, 2022;
Shang et al., 2014) as those are capable of representing complex
behavior under nonlinear and multivariable domain. However, the
current challenges with problem formulation and struggle with ill-posed
problems with uncertain parameters, complex geometric domains, and
stiff partial differential equations in high-dimensional space call for
data-driven methods to handle modeling tasks in engineering. Thus,
they can overcome the practical limits of mechanistic modeling by
representing the complex interactions, although the process is treated as
a black box to some extent, and deliver models at a lower cost, in turn
being useful for optimization. However, those models are more useful
and reliable once the training problem is tightened by additional and
case dependent constraints to achieve the best performance based on the
statistical quality of the data.

To reveal complex interactions between input and output variables,
such as estimating chemical characteristics, creating closure models,
evaluating uncertainty, predicting reaction outcomes, and compre-
hending catalytic processes, ML approaches are implemented previously
(Leonard et al., 2021; Trinh et al., 2021). Supervised ML models are
frequently used to construct representative relationships and causality
among inputs and outputs, for the prediction of the latter with high
accuracy. In parallel, deep learning, which employ multiple hidden
layers, has been gaining more attention in chemical engineering
(Venkatasubramanian, 2019; Schweidtmann, 2021; Zhong et al., 2021).
This has resulted in an exponential increase in the number of studies on
the subject, since it has a flexible nature of fitting to complex and
nonlinear data with high number of interactions among hidden layers.
Deep learning and predictive analytics algorithms have the potential to
significantly accelerate sustainable chemistry design by deciphering
multiple layers of representations from high-throughput experiment and
theoretical calculation data without the need for specific feature ex-
tractors to be designed and tuned (Leonard et al., 2021; Ning and You,
2019). Deep neural networks (DNNs) are sophisticated, nonlinear,
learning-based mathematical formulations which require advanced
mathematical tools in the training due to increased complexity, which
can be handled by many commercial and open-source optimization
solvers. In particular, a feedforward DNN carries information from input
layer to the output layer without using feedback connections and
propagating the knowledge in a single direction only. Synthesis of those
is theoretically challenging once automated approach, which delivers
more efficient architectures based on statistical measures and expres-
sions rather than human impact, is required. In order to make an
automated approach method to balance the complexity and accuracy,
and to decrease the impact of overfitting, Bayesian Information Criterion
(BIC) (Schwarz, 1978) and the Akaike Information Criterion (AIC)
(Akaike, 1998), are promising and common model selection statistics.
AIC is a statistical formulation and manages the trade-off between
complexity and fitting performance. Thus, a reduced model with fewer
parameters, favored by BIC and AIC during the model development and
training, would result a more reliable prediction profile, which is less
eposed to the impact of the possible overfitting issues. For such purpose,
both BIC and AIC aim to balance the model complexity and fitting
performance, in turn delivers similar conclusions intuitively, although
the former penalizes the parameters more.

Sensitivity analysis (SA) is an important part of model prediction
uncertainty and parameter identifiability tasks (Loucks and Van Beek,
2017; Saltelli et al., 2019; Helton et al., 2006; Razavi, 2021; Ricotti and
Zio, 1999; Wallace, 2000). Based on the knowledge obtained from SA,
some inference based on the prediction robustness and model archi-
tecture efficiency can be performed (Helton, 1993; Ginocchi et al., 2021;
Saltelli and Sobol, 1995; Zheng and Keller, 2006). It has also found
widespread implementations in ML and data science, with current
heuristics established to aid in feature and structure selection as well as
to solve explainability and interpretability challenges. Further

formalization and tailorization of SA approaches and tools may help in
addressing the explainability, interpretability, and falsifiability concerns
(Saltelli et al., 2021; Razavi, 2021). Also, SA is essential in systems
analysis and modeling because it aims to investigate causalities, identify
unimportant elements, evaluate data value, and measure the sensitivity
of an expected outcome to various choice alternatives, restrictions, as-
sumptions, and uncertainties. It is currently regarded a necessity for
modeling to use the sparsity of factors principle (Saltelli et al., 2020;
Better regulation: guidelines and toolbox, 2023). SA can be conducted
using techniques such as one-at-a-time analysis, partial derivatives, or
local sensitivity analysis (Ginocchi et al., 2021). Local Sensitivity
Analysis (LSA) is a method to calculate the sensitivity around a nominal
point. Despite being criticized for offering a confined overview of the
overall space, it is useful particularly when studying parameter rele-
vance in mathematical modeling (Saltelli et al., 2019; Saltelli and
Annoni, 2010; Qin et al., 2023). However, LSA accuracy might be
limited once uncertainty range and corresponding nonlinear impact are
considerable, calling for including higher order terms in the formula-
tions (Li et al., 2023). With a strong relation to uncertainty evaluation
(Loucks and Van Beek, 2017; Saltelli, 2019; Helton et al., 2006; Razavi,
2021; Wallace, 2000; Helton, 1993) LSA is used to label parameters with
low sensitivity to manage prediction uncertainty. Thus, a model archi-
tecture with a more robust prediction profile can be obtained (Loucks
and Van Beek, 2017; Razavi, 2021; Bergamini et al., 2019). For DNN
tasks, SA would be useful for the input variable selection and model
structure formulation with aforementioned theoretical advancements
(Razavi, 2021; Saltelli et al., 2021).

In the literature there are significant number of studies on the
network structure development; despite very few focus on statistical
approaches such as BIC and AIC; or sensitivity analysis based on vari-
ables in the training stage. Sildir et al. (Sildir et al., 2020) to solve land
cover classification issues using two public hyperspectral datasets and
showed the contribution of the reduced network. The authors suggest
that the optimal number of hidden layer nodes depends on various
factors, as too few can cause significant training errors and overfitting,
while too many can lead to compared classification accuracies. The
study conducted by Bortolan et al. (Bortolan and Fusaro, 1996) exam-
ines at the possibility of building an ANN for ECG diagnostic classifi-
cation by starting with a huge feature space and then pruning it down.
Two different pruning approaches have been investigated in this work;
the criteria are based on the error function’s sensitivity to the removal of
a node (node sensitivity) or a weight (weight sensitivity). Ganesh et al.
(Ganesh et al., 2022) suggest a novel DNN pruning algorithm called the
slimming neural networks using adaptive connectivity scores that uti-
lizes the use of the adaptive conditional mutual information to measure
filter connectivity, a simple set of operating constraints to automatically
define the upper pruning percentage limits of layers in a DNN, and a
sensitivity criterion to help protect a subset of crucial filters from
pruning. With a single train-prune-retrain cycle, SNACS gives a quicker
total run-time, increases estimate accuracy, and offers state-of-the-
art levels of compression. Agarwal et al. (Agarwal et al., 2006) used the
back propagation artificial neural network approach to perform a
research on monsoon runoff and sediment output in an Indian catch-
ment. The results were compared with observed data and models for
linear transfer functions with one or more inputs. Cross-validation was
used to generalize the model parsimony, which was done by network
pruning using error sensitivity as a weighting factor. The study found
that ANN-based runoff simulation outperformed single-input models in
verification and calibration, and the sediment-yield models showed
superior results in cross-validation and verification. Ennett et al.’s
(Ennett and Frize, 2000) study used weight-elimination on the coronary
artery bypass grafting (CABG) database and purposefully increases
training sets’ death rates to address the problem of skewed a priori
probabilities in medical decision aids. The results of the research show
that increasing the mortality rate enhances sensitivity at costs of addi-
tional indicators of performance, whereas weight-elimination cost
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function increases sensitivity without significantly impacting other pa-
rameters. Lal et al. (Lal et al., 2004) utilized and contrasted two ap-
proaches to predict splice locations in their study. The first approach was
utilizing a training dataset that included both genuine and false splice
sites to train neural networks. After that, test samples were run through
the trained network in order to calculate sensitivity. In the second
approach, the prediction of splice locations is done using a pruning
maximum likelihood model. This method is aimed at identifying splice
sites in sequences regardless of the gene. Lastly, Ari et al. (Ari and Saha,
2009) have developed an optimized Artificial Neural Network structure
for classifying heart sound signals automatically. The network was built
with a compact output layer and successively optimized, with redundant
synaptic weights determined based on local relative sensitivity index,
hidden nodes removed, and unneeded input nodes pruned. This method
utilizes information that is often accessible during the back propagation
procedure, requiring just a little amount of computation. The reduced
testing time caused by the smaller ANN increases user comfort in real-
time devices. Because of its optimization, the ANN works well on low-
cost hardware platforms.

However, most of the literature studies about the network structure
reduction were obtained through sequential and heuristic methods with
not explicit model selection statistics or sensitivity considerations
through simultaneous tasks. In this respect, the main objective of our
study is to build a parsimonious model that a balanced between model
fit and complexity, achieving this balance by using fewer but more
significant parameters in terms of their sensitivities. Such a simulta-
neous model development task is a comprehensive mixed integer
nonlinear programming problem (MINLP) to select the significant inputs
and parameters with high sensitivity simultaneously by integrating
common model selection statistics, BIC and AIC. Thus, in addition to
reduced overfitting to obtain a similar training and test performance, the
aim development of a DNN architecture requiring major input variables
which are most influential in terms of prediction. Two cases from actual
plants, one of which is publicly available, are used to demonstrate the
impact and show the contribution.

2. Methodology

2.1. Fully connected deep neural network (f-DNN)

DNNs transform knowledge in input vector, u, to prediction, y,
through successive activation functions after some linear operations,

operated at different hidden layers. Once the information flow is prop-
agated in a single direction, the architecture is mostly referred feed-
forward, as feedback loops are not included in the formulation. A typical
formulation to calculate the prediction of a particular layer is given by:

yl = fl
(
wl • ul− 1 +bl

)
(1)

where wl and bl the weight matrix and the bias vector of layer l,
respectively; ul− 1 is the input vector to be processed by layer l; yl is the
prediction to be delivered to succeeding layers and is the ultimate pre-
diction once it is the output layer; fl is the activation function at layer l to
introduce nonlinearity, if needed, to the network and has a vast number
of options, including sigmoid, hyperbolic tangent, rectified linear unit.
In general f-DNNs are trained through some kind of unconstrained

nonlinear optimization problems and given by:

Minw1 ,⋯,wL ,b1 ,⋯bL
1
D
∑D

d=1
‖yd − y

M
d ‖

s.t.

yd = fl
(
wl • ul− 1d + bl

)
l = 1,⋯, L (2)

where N is the number of samples; L is the number of layers in the
network; ud is the dth input sample; yd is the dth sample prediction from f-
DNN; ydM is the dth sample measurement.

2.2. Pruned deep neural network (p-DNN)

Local sensitivity analysis a useful and common formulation to obtain
partial derivatives of variables with respect to model parameters, for the
utilization in training in addition to many other theoretical tasks
including identifiability issues and uncertainty quantification. Despite
locality, they have found significant applications in many fields through
various analytical and sampling-based methodologies (Perry et al.,
2006). In addition, those methods should be tailored well for the
equations under considerations to handle arising complexity and
intractable model solvability. In contrast to ODEs, where forward
sensitivity expressions have derived, the calculations of sensitivities are
a challenging task due to recursive and accumulative nonlinear behavior
during the knowledge propagation in the DNN architecture under
algebraic formulations. However, once the superstructure of the DNN is
provided, algorithmic and automatic differentiation tools are useful to
exploit the general formulation once the hyperparameters are specified
to calculate:

syr ,wijld =
∂yrd
∂wl

ij
(3)

where s
yr ,wlijl
d is the change of the rth prediction variable in the dth sample

to a small change in DNN weight, wlij, in lth layer with row and column
indices i and j, respectively. Note that the formulation in Eq. (3) is
applicable for all weights and biases in a DNN once the activation
functions have a continuous nature. Eq. (4) is the sensitivity expression
for the weights in the first layer which process the input variables when
two hidden layers activated by hyperbolic tangent function exist.

where n1s and i1s are the indices of row and column of the parameter
under consideration; d is the index of data sample; R is the number of
outputs; N1 is the number of neurons in the first hidden layer; N2 is the
number of neurons in the second hidden layer; I is the number of inputs;
s1n1s ,i1s ,d is the sensitivity coefficient with proper indices. Note that Eq. (4)
is derived for a two-hidden layer network which includes hyperbolic
tangent function in all layers, except for the input layer, and focuses on
the weights between the input layer and the first hidden layer. Advanced
algorithmic and automatic differentiation tools are useful and can easily
be modified for different tasks easily, if needed, enabling the utilization
of rigorous optimization solvers benefiting from sophisticated mathe-
matical reformulations and approximations for handling complex nature
of ultimate nonlinearity.

Modified training problem is given by:

s1n1s ,i1s ,d =
∑R

r=1

∑N2
n2=1

⎛

⎝
∑N1

n1=1
− wn2 ,n1swr,n2ui1s ,d

⎡

⎣tanh

{

bn1s +
∑I

i =1
w1
n1 ,i • ui,d

}2

− 1

⎤

⎦

⎞

⎠

n1 = 1,⋯, N1
i = 1,⋯, I

d = 1,⋯,D

(4)
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Minw1 ,⋯,wL ,b1 ,⋯bL ,w1B
∑D

d=1

∑N1
n1s=1

∑I

i1s=1

(
w1B
n1si1s s

1
n1s ,i1s ,d

)2
(5.1)

s.t.

yd = fl
(
wl • ul− 1d + bl

) l = 1,⋯, L
d = 1,⋯,D

(5.2)

1
D

∑D

d=1

‖yd − yMd ‖
yMd

≤ MSED (5.3)

wLB • w1B
n1si1s ≤ w1

n1s ,i1s ≤ wUB • w1B
n1si1s

n1 = 1,⋯, N1
i = 1,⋯, I

(5.5)

w1B
n1 ,i = w1B

n1+1,i
n1 = 1,⋯, N1 − 1

i = 1,⋯, I
(5.6)

BIC =
− 2
D

∑D

d=1

‖yd − y
M
d ‖+ log(D)

∑N1

n1s=1

∑I

i1s=1
w1B
n1s ,i1s (5.7)

AIC = −
2
D

∑D

d=1
‖yd − yMd ‖+

2
D

∑N1

n1s=1

∑I

i1s=1
w1B
n1s ,i1s (5.8)

BICL ≤ BIC ≤ BICH (5.9)

AICL ≤ AIC ≤ AICH (5.10)

w1B ∈ {0,1} (5.11)

where a sensitivity related objective function is introduced, unlike
traditional training tasks. Note that, the sensitivity information is
calculated and introduced for all data in the training region, although
not theoretically a necessity, and fewer samples might be considered in
the objective function when computational issues become hindering.
Normalized training error is introduced in Eq. (5.3) as a constraint
where a certain fitting performance which is mostly determined by the
measurement accuracy or prediction capability requirement by the plant
engineers. Thus, the formulation ensures the selection of maximum
sensitivity coefficients whose existence is introduced through the binary
variable matrix,w1Bn1s i1s , which represents the existence of the connections
between the input and the first hidden layer. In turn, the sensitivity
coefficients of the selected connections are considered in the objective
function only, through Eq. (5.5) which constraints the corresponding
weights to zero once the connection is eliminated when the binary
variable is also zero. The elimination of the connections between input
layer and the first layer is further tailored through Eq. (5.6) which
converts problem into an input selection formulation to ensure the
elimination of all connections from a particular input to the next layer
neurons, reducing the network architecture as well, and performing
simultaneous input selection. The tradeoff between fitting performance
and the model complexity of p-DNN has been included in the training
problem through introducing BIC and AIC as additional constraints.

Thus, a more convenient network architecture to avoid overfitting is
obtained, balancing fitting and complexity with constrained values of
BIC and AIC. With similar conclusions, BIC has more penalty on the
parameters. Therefore, it is essential to use AIC and BIC in model
development with their proven capability in contributions to model
selection, overfitting reduction, and balancing model fit and complexity.
The two statistical models (AIC and BIC) are expressed in Eq. (5.7) and
Eq. (5.8). Despite significant computational load increase in the training
for such superiorities, a fewer number of parameters exist in the ultimate
architecture and serves significant superiority in subsequent model up-
date tasks once a new measurement becomes available. In practice, such
a complex problem solution is required rarely, once a new input or

output is introduced, and in offline mode, making the overall problem
solution beneficial in terms of process development.

3. Results

Formulations in Eq. (2) and Eq. (5) are solved through open source
IPOPT and BONMIN solver, respectively, through Python/Pyomo
interface for comparison purposes based on two industrial datasets, one
of which has been publicly available, although the other is not available
due to proprietary reasons. Two case study datasets were initially
filtered for outliers using the Isolation Forest method, chosen for its
scalability and effectiveness in isolating anomalies in large and complex
datasets. Specifically, in the Gas hold-up in bubble column case study,
data points below 10% of the target parameter were removed, following
a referenced study. Both case studies, including the Gas hold-up in
bubble column and Hydrogen production in a reformer plant, used a
constant testing data size of 200 randomly selected data points. After
filtering, the dataset size for the first case study was reduced from 4042
to 250–300 data points, and for the second case study, from 731 to 250
data points. The filtered data were normalized using MinMaxScaler,
scaling variables between − 1 and 1 for numerical purposes while pre-
serving data patterns. For both case studies, the filtered and scaled
datasets were divided into training datasets (50 or 100 data points) and
testing datasets (200 data points). The training dataset was used to
discover the connection between dependent and independent variables,
while the testing dataset evaluated the trained model’s performance.
Mean square error (MSE), mean absolute percentage error (MAPE) and
R2 values are calculated for training and test data based on different
number of training samples and number of neurons in hidden layers.
Computations are performed on an Intel Core i7 processor with 8GBs of
RAM.

3.1. Gas hold-up in bubble column

Bubble columns are widely utilized in the chemical industry as
gas–liquid contactors and multiphase reactors for various applications
like oxidations, hydrogenations, fermentations, and synthetic fuel pro-
duction due to their high mass transfer rate, interfacial area, and heat
transfer coefficient. The design of industrial columns requires under-
standing characteristics like gas hold-up, heat transfer coefficient,
volumetric mass transfer coefficient, and effective interfacial area,
which are influenced by physical and chemical qualities, operational
circumstances, and geometric parameters (Rollbusch et al., 2015).
However, from an industrialization perspective, they have

s1n1s ,i1s ,d =
∑R

r=1

∑N2
n2=1

⎛

⎝
∑N1

n1=1
− wn2 ,n1swr,n2ui1s ,d

⎡

⎣tanh

{

bn1s +
∑I

i =1
w1
n1 ,i • ui,d

}2

− 1

⎤

⎦

⎞

⎠

n1 = 1,⋯, N1
i = 1,⋯, I

d = 1,⋯,D

(5.4)
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disadvantages such as difficulty in scaling up (Ren et al., 2006). To
handle this difficulty, there are several studies have used ANN to predict
bubble diameter, mass transfer coefficient, and gas hold-up. Studies

have used ANN to predict kLa, estimate bubble diameter, measure ul-
trasound, and predict gas hold-up (Alvarez et al., 2001; Wu et al., 2003).
The study by Behkish, A. et al. developed and validated a robust ANN for
gas holdup prediction in bubble column reactors (BCRs) and slurry
bubble column reactors (SBCRs) under various conditions. The model
was trained using over 3880 and 1425 data, including gas–liquid-solid
properties, operating variables, reactor geometry, and gas sparger type/
size through an extensive study on experimental gas holdup and litera-
ture, resulting in 90 % prediction accuracy (Behkish et al., 2005).
Additionally, in the referenced study, a machine learning-based data-
driven methodology is presented for predicting gas hold-up on an in-
dustrial scale, using literature data and independent parameters like
physical dimensions, sparger design, and physicochemical (Hazare,
2022).

This case is obtained from a dataset of 4042 samples of a gas–liquid
bubble column to estimate the gas hold-up based on 14 input variables
as shown in Table 1 (Hazare, 2022). In contrast to the referenced work,
the sparger type as a design parameter was not used in this investigation.

The performance of f-DNN and p-DNN are evaluated and compared
at different network architectures and number of training samples. The
prediction and measurement values are shown in Table 2.

Table 1
Case 1 variable descriptions.

Type Description Tag

Inputs column diameter u1
liquid height u2
sparger hole diameter u3
percentage free area u4
density of gas u5
viscosity of gas u6
molecular weight of gas u7
density of liquid u8
viscosity of liquid u9
surface tension of liquid u10
liquid velocity u11
temperature u12
pressure u13
superficial gas velocity u14

Output The gas hold-up y1

Table 2
f-DNN and p-DNN training and test performance with different number of neurons and training samples.

Training Test

# Neuron

1st HL 2nd HL f-DNN p-DNN f-DNN p-DNN

50 training samples 4 3

8 6

100 training samples 4 3

8 6
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Some commons statistics to quantify the performance comparisons
are provided in Table 3.

The MSE, MAPE and R2 of the f-DNN and p-DNN are calculated once
the predictions are denormalized to actual scale. The test MSEs in the
two models increased with model complexity although the impact is
smaller for p-DNN. In parallel, MSE and MAPE results showed a similar
pattern at two different training data number. However, p-DNN out-
performs f-DNN test performance mostly with a more similarity in
training and test performance, and compatible with MSEs reported by

Hazare et al. (Hazare, 2022). Such a similarity in training and test per-
formance in p-DNN is obtained through elimination of some inputs with
the formulation in Eq. (5) by constraints in AIC and BIC which are
summarized in Table 4:

The connections between layers (input, hidden, and output) in p-
DNNmodels are shown in Table 5. Unlike f-DNN, processing 14 inputs to
represent the superstructure in terms of all available information, a
subset of the input variables is connected to succeeding layer. Those
connections are formed through automated pruning algorithm pre-
sented in Eq. (5) and would deliver different network architectures once
the number of hidden layer neurons and data change.

In contrast to f-DNN, where 14 inputs are utilized, p-DNN eliminates
some inputs to achieve constraints by model selection statistics, BIC and
AIC, which primarily take the number of connections and the training
error in the formulation. Once the simultaneous optimization formula-
tion with a sensitivity based objective function is employed, the related
weights are also significant and contributional in terms of prediction
performance. Note that, the test performance of p-DNN, with a satis-
factory accuracy, is more favorable in terms of theoretical and practical

Table 3
Some common statistics on the performance of f-DNN and p-DNN.

Training Testing

Method Training
Samples

#N 1st HL #N 2nd HL MSE
(×10− 4)

MAPE R2 MSE
(×10− 4)

MAPE R2

ANN (Hazare, 2022) ​ 8 6 − − − 4.0 7.04 0.87
f-DNN 50 4 3 0.37 2.31 0.99 3.20 7.68 0.91

8 6 10− 13 10− 7 0.999 9.53 12.45 0.73
100 4 3 0.48 2.66 0.99 2.31 6.02 0.93

8 6 0.015 0.35 0.999 6.46 9.61 0.82
p-DNN 50 4 3 1.56 4.33 0.94 3.23 8.46 0.91

8 6 5.32 7.80 0.79 5.81 10.05 0.83
100 4 3 3.71 7.54 0.88 3.96 8.24 0.89

8 6 3.74 7.21 0.87 3.82 7.61 0.89

Table 4
AIC, BIC, and training time for p-DNN development.

Method Training
Samples

#N 1st HL #N 2nd HL AIC BIC Time
(sec)

p-DNN 50 4 3 1.50 136.40 12.74
8 6 2.73 259.12 67.31

p-DNN 100 4 3 0.73 156.83 445.34
8 6 1.37 304.18 2877.18

Table 5
The representation of network structure of p-DNN models.

# Neuron Training Samples

1st HL 2nd HL 50 100

4 3

8 6
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performance with reduced overfitting impact which is observed in the
similarity of training and test performance, with a 40 % reduction in
input space approximately This means 6 input connections are removed,
leaving 8 active connections among the 14 input variables. Consistent
results indicate that liquid height (u2), sparger hole diameter (u3), per-
centage free area (u4), and superficial gas velocity (u14) are essential,
while the density of gas (u5) and pressure (u13) are consistently elimi-
nated. The other input variables possibility of pruning or not pruning
was dependent on model design structure based on the number of
neurons in the network structure. Such a behavior is more obvious when
a higher number of neurons are introduced with few training samples.

Lastly, in the study by Hazare et al. study (Hazare, 2022), column
diameter (u1), liquid height (u2), sparger hole diameter (u3), density of
gas (u5), density of liquid (u8), viscosity of liquid (u9), surface tension of
liquid (u10) and superficial gas velocity (u14) were trained, whereas
percentage free area (u4), viscosity of gas (u6), molecular weight of gas
(u7), liquid velocity (u11), temperature (u12) and pressure (u13) were not
included. This led to a similarity of included and excluded input vari-
ables in network structures with p-DNN input selection, ranging between
43 % and 71 %.

3.2. Hydrogen production on reformer plant

The hydrogen production plant of SOCAR in Türkiye is established to
process natural gas for the production of the required hydrogen
throughout the refinery by following conventional steam methane
reforming technology. Natural gas is used as the main feed for the
production of high-purity hydrogen. In fact, the process mainly consists
of a pretreatment section, reformers preceded by a pre-reformer to
process different feedstocks at higher temperatures with no fouling from
polymerization reactions, a hydrogen purification unit, and some
auxiliary combustion and heat recovery systems. The process com-
mences with natural gas purification at which the hydrogen reactor
section is used to prevent the reforming catalyst from poisoning due to
the substantial impurities in natural gas feed. Therefore, the natural gas
feed is initially treated to remove the sulfur-based compounds, chlo-
rides, and some metals to an acceptable level or convert them into non-
hazardous components for further catalytic processes. In the pretreat-
ment section, several catalysts, guards, and adsorbents are used for the
removal of these compounds from the feed. In general, since the life time
of the pre-reformer catalyst is a function of the total sulphur entering the
reactor, the pre-reformer life time can be increased by achieving deep
desulphurization. Then, treated natural gas is comparatively fed to the
reformer train. The pre-reformer is used to adiabatically convert rela-
tively higher hydrocarbons inside treated natural gas into methane,
carbon monoxide, carbon dioxide, and hydrogen mixture. The pre-
reformer reduces the reformer load and thus its size. Due to the over-
all exothermic behavior of the complex reactions, the exit temperature
of the first reformer increases and then, the effluent is fed to the second
reformer after mixing with excess steam to prevent undesired reactions.
In the second reformer, steam methane reforming and water–gas shift
reactions occur with some side reactions such as Boudard, reduction,
and cracking reactions. The overall reaction occurred in the second
reformer is endothermic, so heat is externally supplied to the second
reformer to sustain the desired conversion. Additionally, the effluent of
the second reformer is sent to the MTS reactor at reduced temperature to
favor the water–gas shift reaction for the additional hydrogen produc-
tion. Then, the conventional Pressure Swing Adsorption unit is used to
obtain high-purity hydrogen. The plant is highly interacting, and a high
number of variables are measured in real-time to ensure the desired
hydrogen production rate.

Natural gas was the main feed of the process which produced
hydrogen for the refinery. The real plant data are used in the developed
model to predict hydrogen production rate from various variables.
Among the variables, the feed flow of natural gas was u14. Feed tem-
perature and pressure were given by u12 and u13, respectively. An

alternative feed was rarely replaced or co-processed with natural gas.
The flow of the alternative feed was described in Sm3/h with u17. The
temperature and pressure of the alternative feed are u16 and u15,
respectively. After hydrogen purification unit, high-purity hydrogen was
produced and used as prediction variable and represented by y1. The flue
gas was discharged by the stack after passing the flue gas fans. The flow
at the stack was given by u9 while u11 and u10 are the temperature and
pressure at the stack measured by the Continuous Emission Monitoring
System abbreviated as CEMS. Moreover, at the stack, SOx and NOx
amounts were measured and represented by u2 and u3, respectively.
Particulate amount at the stack was given by u4 while carbon monoxide
and carbon dioxide were tabulated as volumetric percentages within u5
and u6, respectively. Finally, the water (vol. %) and oxygen (vol.%)
amounts were described as u7 and u8.

In this dataset, there were 17 input as independent variables and an
output as dependent variables as shown Table 6. This study aimed to
automate the selection of independent variables based on the most
influential weight parameters in algorithms using proposed. Table 7
presents the training and testing results for f-DNN and p-DNN with
varying neuron numbers in the hidden layer. The f-DNN employs 17
inputs in all calculations in contrast to p-DNN which lacks some of the
inputs due to elimination based on model selection statistics. The results
show no significant change in f-DNN and p-DNN when increasing the
neuron number in the hidden layer with decreasing input variables in
the training model.

Table 8 contains several common statistics for performance evalua-
tion. f-DNN suffers from significant differences in training and test
performances in contrast to p-DNN which also delivers satisfactory test
performance.

Such a reduction in input space is obtained through AIC and BIC,
which are reported in Table 9, as well as the training times.

Table 10 shows the architectures p-DNNs. The selected inputs have
82 % similarity across different simulations employing different DNN
architectures. However, p-DNN results indicate that u1, u6, u7, u8, u9, u10,
u11, u12, u14, and u16 should be included in the formulation, in contrast to
u2, u4, u15, and u17.

4. Conclusions

Sustainable development in chemical engineering is a multi-faceted
endeavor, balancing ecological, social, and economic dimensions. The
integration IIoT requires the exploitation of complex interactions among
process variables to ensure a reliable and robust prediction performance
for data driven formulations. In this context, the deployment of
advanced machine learning formulations, including deep learning, is a
major requirement for sustainable production and consumption in

Table 6
Case 2 variable descriptions.

Type Description Tag

Inputs capacity reformer u1
SOx u2
NOx u3
Particulate u4
CO u5
CO2 u6
H2O u7
O2 u8
stack flow u9
stack pressure u10
stack temperature u11
natural gas feed temperature u12
natural gas feed pressure u13
natural gas flow u14
alternative fuel pressure u15
alternative fuel temperature u16
alternative fuel flow u17

Output hydrogen y1
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minimizing environmental impacts while ensuring economic viability.
Building on this foundation, this study develops an MINLP train and
form DNN architecture by selection of high-sensitivity model parame-
ters, which in turn results in input selection, through including BIC and
AIC in the training problem to balance the model complexity and fitting
performance simultaneously and rigorously. In contrast to traditional
unconstrained nonlinear optimization to achieve network weighs under
a fixed topology, this formulation is flexible as the training accounts for

the existence of particular connections as well as their weights, in turn
delivering a robust network with reduced overfitting.

The impact of the model complexity on the predictions has signifi-
cant outcomes and implications in terms of model robustness and reli-
ability. In theory, challenges increase significantly once the interactions
are described by higher number of parameters employed by nonlinear
expressions due to increased correlation among the parameters and their
impacts on the outputs. Such a theoretical challenge is actually beyond

Table 7
f-DNN and p-DNN training and test performance with different neuron numbers and pruning input variables.

Training Test

# Neuron f-DNN p-DNN f-DNN p-DNN

1st HL 2nd HL

13 inputs 4 3

8 6

10 inputs 4 3

8 6

Table 8
Some common statistics on the performance of f-DNN and p-DNN.

Training Test

# inputs #N 1st HL #N 2nd HL MSE
(x10− 3)

MAPE R2 MSE
(x10− 3)

MAPE R2

f-DNN 17 4 3 10− 8 10− 4 0.999 6.24 12.36 0.78
8 6 10− 10 10− 5 0.999 5.63 12.17 0.80

p-DNN 13 4 3 2.57 6.99 0.92 2.80 7.97 0.90
8 6 2.59 7.00 0.92 2.82 8.01 0.90

p-DNN 10 4 3 2.63 7.06 0.92 3.18 8.61 0.89
8 6 3.03 7.41 0.91 3.46 8.74 0.88
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the scope of the neural network architecture development and covers
even first principle formulations, resulting in difficult to overcome
identifiability issues. In practice, those identifiability issues mostly arise
from the lack of spatial and temporal variation of the data, which can not
be compensated by collection of large amount of data once, which is a
usual case for industrial plants where sensor implementations or
frequent laboratory measurements are limited due to safety reasons or
mechanical issues. In such cases, a model with representative capability
in terms of training and test performance is mostly more reliable once it
is constructed upon identifiable parameters. Related unidentifiability
issues can statistically and quantitatively be represented and propagated
within the model expressions through associated confidence regions,
through computation of fisher information matrix and its advanced
formulations to calculate the prediction intervals. Moreover, those tasks
employ some form of Jacobian formulation which is calculated at a
particular point in solution domain, which is computationally chal-
lenging once the formulations are highly nonlinear and nonconvex as in
the deep learning architecture development. The proposed formulation
is built upon statistically proven mathematical issue and do not explic-
itly address theoretical aspect, since it has already been well studied for
various formulations; and left as a future study. On the other hand, our
case studies are compatible with the theoretical foundations and show
superiority over commonly implemented fully connected deep learning
architectures.

The formulation in Eq. (5), in addition to many other considerations,

tightens the bounds of deep learning architecture weights through uti-
lization of binary variables. This in turn enables the elimination of the
information from corresponding input to the succeeding layers; in other
words, the contribution from the input is eliminated. The resulting ar-
chitecture is insensitive to these input changes and can still perform
accurate prediction despite the lacking of the measurement for the
corresponding input. Traditional methods, such as usage of large
amount of data or regularization formulations to penalize the weight
magnitudes through multi objective formulations would not guarantee
the elimination of the inputs since the connection still exist after the
training. In addition, having a small magnitude weight value for a
particular connection between input and the hidden layer does not
necessarily bring small sensitivity to the input due to information
propagation in the network. Furthermore, the input variable is still
necessary to perform predictions, which hinders the real time applica-
tions in plants with preserving high amount of sensor requirements.
Some sequential pruning algorithms perform retraining after removal of
connections which are characterized by small magnitudes, to reduce the
computational challenges associated with the simultaneous approach
presented in this study.

Proposed formulation is handled through open source BONMIN
solver, although more advanced commercial solvers are available (i.e.
KNITRO, BARON) to exploit better network architectures with their
superiority to treat nonlinear and nonconvex terms through sophisti-
cated reformulations and decompositions, enabling the global opti-
mality. Current approach, although advanced reformulations have not
been introduced explicitly, has delivered a DNN architecture with an
acceptable accuracy on two industrial datasets. Thus, despite the current
solution is local, since the ultimate prediction performance is satisfying
on our side, further modifications in the problem solution are not
considered and left as a future work.

A major limitation of the proposed rigorous formulation is the
complexity of the resulting MINLP which is currently challenging once a
high number of data samples are considered. Proposed rigorous
approach requires explicit formulation and definition for variables and

Table 9
AIC, BIC, and training time for p-DNN development.

Method # inputs #N 1st HL #N 2nd HL AIC BIC Time
(sec)

p-DNN 13 4 3 2.32 215.35 45.96
8 6 4.40 418.77 261.17

p-DNN 10 4 3 1.84 168.36 68.73
8 6 3.43 324.56 871.94

Table 10
The representation of network structure of p-DNN models.

# Neuron # inputs

1st HL 2nd HL 13 inputs 10 inputs

4 3

8 6
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constraints, which leads to drastic problem size increase as the number
of training samples increase. On the other hand, training size is usually
performed offline and rarely; thus, can be performed using high-
performance computers and advanced solvers, if needed. In addition,
some reformulations and approximations in the nonlinear terms com-
bined with a sophisticated sample selection approach would contribute
to the issue.

Despite small number of training data, the current approach deliv-
ered similar training and test performance both due to significant
reduction in the input space and sensitivity related objective function
formulation. On the other hand, the proposed formulation does not need
a pre-definition on the number of inputs required for the training and
benefits from commonly used model selection statistics to balance the
model fitting and its complexity. To favor the computational efficiency,
explicit formulations of sensitivity expressions, obtained from algo-
rithmic differentiation, are included in addition to linking constraints to
tighten the search space and provide a better convergence rate. Such a
sophisticated training problem also makes the DNN more robust to
number of hidden layer neurons, which is challenging to determine
before solving the optimization problem.
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