Please use this identifier to cite or link to this item: https://hdl.handle.net/11147/14517
Title: Polarization Dynamics of Solid-State Quantum Emitters
Authors: Kumar, Anand
Samaner, Caglar
Cholsuk, Chanaprom
Matthes, Tjorben
Pacal, Serkan
Oyun, Yagiz
Vogl, Tobias
Keywords: quantum emitters array
hexagonal boron nitride
nanodiamond NV centers
electron irradiation
defectidentification
temporal polarization dynamics
density functional theory
Publisher: Amer Chemical Soc
Abstract: Quantum emitters in solid-state crystals have recently attracted a great deal of attention due to their simple applicability in optical quantum technologies. The polarization of single photons generated by quantum emitters is one of the key parameters that plays a crucial role in various applications, such as quantum computation, which uses the indistinguishability of photons. However, the degree of single-photon polarization is typically quantified using the time-averaged photoluminescence intensity of single emitters, which provides limited information about the dipole properties in solids. In this work, we use single defects in hexagonal boron nitride and nanodiamond as efficient room-temperature single-photon sources to reveal the origin and temporal evolution of the dipole orientation in solid-state quantum emitters. The angles of the excitation and emission dipoles relative to the crystal axes were determined experimentally and then calculated using density functional theory, which resulted in characteristic angles for every specific defect that can be used as an efficient tool for defect identification and understanding their atomic structure. Moreover, the temporal polarization dynamics revealed a strongly modified linear polarization visibility that depends on the excited-state decay time of the individual excitation. This effect can potentially be traced back to the excitation of excess charges in the local crystal environment. Understanding such hidden time-dependent mechanisms can further improve the performance of polarization-sensitive experiments, particularly that for quantum communication with single-photon emitters.
Description: Chapman, Robert James/0000-0002-0368-8483; pacal, serkan/0000-0002-1757-5228; Grange, Rachel/0000-0001-7469-9756; Ates, Serkan/0000-0001-5452-6727; Kumar, Anand/0000-0001-9868-6220; Cholsuk, Chanaprom/0000-0002-5936-8032; Saerens, Gregoire/0000-0001-8568-8462
URI: https://doi.org/10.1021/acsnano.3c08940
https://hdl.handle.net/11147/14517
ISSN: 1936-0851
1936-086X
Appears in Collections:PubMed İndeksli Yayınlar Koleksiyonu / PubMed Indexed Publications Collection
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection

Show full item record



CORE Recommender

SCOPUSTM   
Citations

5
checked on Nov 15, 2024

WEB OF SCIENCETM
Citations

6
checked on Nov 9, 2024

Page view(s)

130
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.