Please use this identifier to cite or link to this item: https://hdl.handle.net/11147/13818
Title: Proton transport through nanoscale corrugations in two-dimensional crystals
Authors: Wahab, O. J.
Daviddi, E.
Xin, B.
Sun, P. Z.
Griffin, E.
Colburn, A. W.
Unwin, P. R.
Keywords: [No Keyword Available]
Publisher: Nature Portfolio
Abstract: Defect-free graphene is impermeable to all atoms(1-5) and ions(6,7) under ambient conditions. Experiments that can resolve gas flows of a few atoms per hour through micrometre-sized membranes found that monocrystalline graphene is completely impermeable to helium, the smallest atom(2,5). Such membranes were also shown to be impermeable to all ions, including the smallest one, lithium(6,7). By contrast, graphene was reported to be highly permeable to protons, nuclei of hydrogen atoms(8,9). There is no consensus, however, either on the mechanism behind the unexpectedly high proton permeability(10-14) or even on whether it requires defects in graphene's crystal lattice(6,8,15-17). Here, using high-resolution scanning electrochemical cell microscopy, we show that, although proton permeation through mechanically exfoliated monolayers of graphene and hexagonal boron nitride cannot be attributed to any structural defects, nanoscale non-flatness of two-dimensional membranes greatly facilitates proton transport. The spatial distribution of proton currents visualized by scanning electrochemical cell microscopy reveals marked inhomogeneities that are strongly correlated with nanoscale wrinkles and other features where strain is accumulated. Our results highlight nanoscale morphology as an important parameter enabling proton transport through two-dimensional crystals, mostly considered and modelled as flat, and indicate that strain and curvature can be used as additional degrees of freedom to control the proton permeability of two-dimensional materials. A study using high-resolution scanning electrochemical cell microscopy attributes proton permeation through defect-free graphene and hexagonal boron nitride to transport across areas of the structure that are under strain.
Description: Xin, Benhao/0000-0003-4156-9781; yagmurcukardes, mehmet/0000-0002-1416-7990; Geim, Andre/0000-0003-2861-8331; Lozada-Hidalgo, Marcelo/0000-0003-3216-7537; Wahab, Oluwasegun/0000-0003-4280-9089; Griffin, Eoin/0000-0002-1246-0333; Daviddi, Enrico/0000-0002-6335-2623
Geim, Andre/0000-0003-2861-8331; Wahab, Oluwasegun/0000-0003-4280-9089; Lozada-Hidalgo, Marcelo/0000-0003-3216-7537; yagmurcukardes, mehmet/0000-0002-1416-7990; Daviddi, Enrico/0000-0002-6335-2623; Griffin, Eoin/0000-0002-1246-0333; Xin, Benhao/0000-0003-4156-9781
URI: https://doi.org/10.1038/s41586-023-06247-6
ISSN: 0028-0836
1476-4687
Appears in Collections:PubMed İndeksli Yayınlar Koleksiyonu / PubMed Indexed Publications Collection
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection

Show full item record



CORE Recommender

SCOPUSTM   
Citations

29
checked on Nov 22, 2024

WEB OF SCIENCETM
Citations

27
checked on Oct 26, 2024

Page view(s)

46
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.