Please use this identifier to cite or link to this item: https://hdl.handle.net/11147/13818
Full metadata record
DC FieldValueLanguage
dc.contributor.authorWahab, O.J.-
dc.contributor.authorDaviddi, E.-
dc.contributor.authorXin, B.-
dc.contributor.authorSun, P.Z.-
dc.contributor.authorGriffin, E.-
dc.contributor.authorColburn, A.W.-
dc.contributor.authorYagmurcukardes, M.-
dc.date.accessioned2023-10-03T07:16:27Z-
dc.date.available2023-10-03T07:16:27Z-
dc.date.issued2023-
dc.identifier.issn0028-0836-
dc.identifier.urihttps://doi.org/10.1038/s41586-023-06247-6-
dc.identifier.urihttps://hdl.handle.net/11147/13818-
dc.description.abstractDefect-free graphene is impermeable to all atoms1–5 and ions6,7 under ambient conditions. Experiments that can resolve gas flows of a few atoms per hour through micrometre-sized membranes found that monocrystalline graphene is completely impermeable to helium, the smallest atom2,5. Such membranes were also shown to be impermeable to all ions, including the smallest one, lithium6,7. By contrast, graphene was reported to be highly permeable to protons, nuclei of hydrogen atoms8,9. There is no consensus, however, either on the mechanism behind the unexpectedly high proton permeability10–14 or even on whether it requires defects in graphene’s crystal lattice6,8,15–17. Here, using high-resolution scanning electrochemical cell microscopy, we show that, although proton permeation through mechanically exfoliated monolayers of graphene and hexagonal boron nitride cannot be attributed to any structural defects, nanoscale non-flatness of two-dimensional membranes greatly facilitates proton transport. The spatial distribution of proton currents visualized by scanning electrochemical cell microscopy reveals marked inhomogeneities that are strongly correlated with nanoscale wrinkles and other features where strain is accumulated. Our results highlight nanoscale morphology as an important parameter enabling proton transport through two-dimensional crystals, mostly considered and modelled as flat, and indicate that strain and curvature can be used as additional degrees of freedom to control the proton permeability of two-dimensional materials. © 2023, The Author(s).en_US
dc.description.sponsorshipEP/L01548X; Association Française contre les Myopathies, AFM; Lloyd's Register Foundation, LRF: G0084; UK Research and Innovation, UKRI: EP/X017745; Engineering and Physical Sciences Research Council, EPSRC: EP/V007688/1, EP/V047981; Royal Society: URF\R1\201515; University of Warwick; European Research Council, ERC: 786532-VANDER, 826204-DOLPHIN; Türkiye Bilimler Akademisien_US
dc.description.sponsorshipThis work was supported by the Engineering and Physical Sciences Research Council (EP/V047981, P.R.U. and E.D.; EP/V007688/1, P.R.U. and O.J.W.), UK Research and Innovation (EP/X017745, M.L.-H.), The Royal Society (Wolfson Research Merit Award, P.R.U. and URF\R1\201515, M.L.-H.), Lloyd’s Register Foundation (Nano Grant G0084, A.K.G.) the European Research Council (786532-VANDER, A.K.G.) and Clean Hydrogen Partnership (826204-DOLPHIN, M.L.-H.). O.J.W. acknowledges support from the University of Warwick Chancellor’s International Scholarship and E.G. acknowledges support from the EPSRC NOWNano programme (EP/L01548X). Part of this work was supported by the Flemish Science Foundation (FWO-Vl) and a BAGEP Award of the Turkish Academy of Sciences with finance from the Sevinc-Erdal Inonu Foundation. We also thank P. Zhao of the University of Warwick for support with AFM and Y. Tao for gas transport measurements.en_US
dc.description.sponsorshipThis work was supported by the Engineering and Physical Sciences Research Council (EP/V047981, P.R.U. and E.D.; EP/V007688/1, P.R.U. and O.J.W.), UK Research and Innovation (EP/X017745, M.L.-H.), The Royal Society (Wolfson Research Merit Award, P.R.U. and URF\R1\201515, M.L.-H.), Lloyd’s Register Foundation (Nano Grant G0084, A.K.G.) the European Research Council (786532-VANDER, A.K.G.) and Clean Hydrogen Partnership (826204-DOLPHIN, M.L.-H.). O.J.W. acknowledges support from the University of Warwick Chancellor’s International Scholarship and E.G. acknowledges support from the EPSRC NOWNano programme (EP/L01548X). Part of this work was supported by the Flemish Science Foundation (FWO-Vl) and a BAGEP Award of the Turkish Academy of Sciences with finance from the Sevinc-Erdal Inonu Foundation. We also thank P. Zhao of the University of Warwick for support with AFM and Y. Tao for gas transport measurements.en_US
dc.language.isoenen_US
dc.publisherNature Researchen_US
dc.relation.ispartofNatureen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectcrystal structureen_US
dc.subjectcurvatureen_US
dc.subjectnanotechnologyen_US
dc.subjectpermeabilityen_US
dc.subjectspatial distributionen_US
dc.subjectgraphiteen_US
dc.subjectheliumen_US
dc.subjectprotonen_US
dc.subjectcell nucleusen_US
dc.subjectconsensusen_US
dc.subjectCell Nucleusen_US
dc.subjectConsensusen_US
dc.subjectGraphiteen_US
dc.subjectHeliumen_US
dc.subjectProtonsen_US
dc.titleProton transport through nanoscale corrugations in two-dimensional crystalsen_US
dc.typeArticleen_US
dc.institutionauthor-
dc.departmentİzmir Institute of Technologyen_US
dc.identifier.volume620en_US
dc.identifier.issue7975en_US
dc.identifier.startpage782en_US
dc.identifier.endpage786en_US
dc.identifier.scopus2-s2.0-85168588620en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.doi10.1038/s41586-023-06247-6-
dc.identifier.pmid37612394en_US
local.message.claim2023-10-18T13:23:14.204+0300|||rp00609|||submit_approve|||dc_contributor_author|||None*
dc.authorscopusid57200118948-
dc.authorscopusid57193382588-
dc.authorscopusid57869764400-
dc.authorscopusid36464351000-
dc.authorscopusid57217330655-
dc.authorscopusid6603549683-
dc.authorscopusid57211041158-
dc.identifier.scopusqualityQ1-
item.grantfulltextnone-
item.openairetypeArticle-
item.fulltextNo Fulltext-
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.languageiso639-1en-
crisitem.author.dept04.04. Department of Photonics-
Appears in Collections:PubMed İndeksli Yayınlar Koleksiyonu / PubMed Indexed Publications Collection
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

10
checked on Apr 5, 2024

Page view(s)

18
checked on May 6, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.