Please use this identifier to cite or link to this item: https://hdl.handle.net/11147/13780
Full metadata record
DC FieldValueLanguage
dc.contributor.authorTuran, Meltem-
dc.contributor.authorDutta, Abhishek-
dc.date.accessioned2023-10-03T07:15:32Z-
dc.date.available2023-10-03T07:15:32Z-
dc.date.issued2023-
dc.identifier.issn2405-8440-
dc.identifier.urihttps://doi.org/10.1016/j.heliyon.2023.e18636-
dc.identifier.urihttps://hdl.handle.net/11147/13780-
dc.description.abstractDeveloping numerical methods to solve polydispersed flows using a Population Balance Equation (PBE) is an active research topic with wide engineering applications. The Extended Quadrature Method of Moments (EQMOM) approximates the number density as a positive mixture of Kernel Density Functions (KDFs) that allows physical source terms in the PBEs to compute continuous or point-wise form according to the moments. The moment-inversion procedure used in EQMOM has limitations such as the inability to calculate certain roots even if it is defined, absence of consistent result when multiple roots exist or when the roots are nearly equal. To address these limitations, the study proposes a modification of the moment-inversion procedure to solve the PBE based on the proposed Halley-Ridder (H-R) method. Although there is no significant improvement in the extent of variability relative to the mean of the tested shape parameter cr values, an increase in the number of floating point operations (FLOPS) is observed which the proposed algorithm responds in limitations mentioned above. The total number of FLOPS for all the kernels used for the approximation increased by around 30%. This is an improvement towards the development of a more reliable and robust moment-inversion procedure.en_US
dc.language.isoenen_US
dc.publisherCell Pressen_US
dc.relation.ispartofHeliyonen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectMoment-inversion procedureen_US
dc.subjectHalley-Ridder methoden_US
dc.subjectExtended quadrature method of momentsen_US
dc.subjectPopulation balance equationen_US
dc.titleFurther Developments of the Extended Quadrature Method of Moments To Solve Population Balance Equationsen_US
dc.typeArticleen_US
dc.authorid0000-0002-0714-1119-
dc.institutionauthorDutta, Abhishek-
dc.departmentİzmir Institute of Technology. Chemical Engineeringen_US
dc.identifier.volume9en_US
dc.identifier.issue8en_US
dc.identifier.wosWOS:001052617600001en_US
dc.identifier.scopus2-s2.0-85166303194en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıtr
dc.identifier.doi10.1016/j.heliyon.2023.e18636-
dc.identifier.pmid37576218en_US
dc.authorscopusid54990019800-
dc.authorscopusid57203557162-
dc.authorwosidDutta, Abhishek/A-7039-2010-
dc.identifier.wosqualityQ2-
dc.identifier.scopusqualityQ1-
item.languageiso639-1en-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
item.grantfulltextopen-
item.openairetypeArticle-
item.cerifentitytypePublications-
crisitem.author.dept03.02. Department of Chemical Engineering-
Appears in Collections:Chemical Engineering / Kimya Mühendisliği
PubMed İndeksli Yayınlar Koleksiyonu / PubMed Indexed Publications Collection
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File SizeFormat 
1-s2.0-S2405844023058449-main.pdf1.58 MBAdobe PDFView/Open
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

1
checked on Dec 20, 2024

WEB OF SCIENCETM
Citations

1
checked on Oct 26, 2024

Page view(s)

168
checked on Dec 16, 2024

Download(s)

58
checked on Dec 16, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.