Please use this identifier to cite or link to this item:
Title: A phenomenological kinetic flotation model: Distinct Time-Variant floatability distributions for the pulp and froth materials
Authors: Polat, Mehmet
Polat, Hürriyet
Keywords: Flotation rate
Floatability distribution
Kinetic modeling
Issue Date: 2023
Publisher: Elsevier
Abstract: A simple and easy-to-use phenomenological kinetic flotation model, strongly connected with the physics of the process, is proposed in this paper. The model explicitly contains the cell volume, aeration rate, volumetric holdup, mean bubble size, and particle density as input variables. It can be employed to characterize the floatability distributions of the particles in the pulp and the froth separately any time during the flotation process. Two new time-dependent kinetic parameters, the bubble loading factor & phi;(t) and the maximum cell mass transfer capacity Mmax(t) also appear in the model expression. & phi;(t) is a measure of the degree of crowding of the bubble surfaces and accounts for the deviations from the first-order rate equation. Mmax(t) describes the maximum amount of mass that can be transported to the froth phase by the bubble population in the cell. Screen fractionation of each froth product collected at different time intervals during a single kinetic flotation test is sufficient to generate the data required by the model for analysis. Application of the model to this data yields directly time-dependent functions for the floatability of the particles reporting to froth Kf(t) or remaining in the cell Kp(t) for each size fraction separately, without the need for any empirical parameters. The test of the model was carried out using published kinetic flotation data from the literature.
ISSN: 0892-6875
Appears in Collections:Chemical Engineering / Kimya Mühendisliği
Chemistry / Kimya
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection

Files in This Item:
File SizeFormat 
  Until 2025-01-01
3.18 MBAdobe PDFView/Open    Request a copy
Show full item record

CORE Recommender

Page view(s)

checked on Feb 23, 2024

Google ScholarTM



Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.