Please use this identifier to cite or link to this item: https://hdl.handle.net/11147/13610
Title: Development of plant-based biopolymer coatings for 3D cell culture: boron-silica-enriched quince seed mucilage nanocomposites
Authors: Yılmaz, Hilal Deniz
Cengiz, Uğur
Derkuş, Burak
Arslan, Yavuz Emre
Keywords: Composite materials
Hydrogel
Nanocomposites
Biopolymers
Publisher: Royal Society of Chemistry
Abstract: Spheroid formation with spontaneous aggregation has captured interest in most cell culture studies due to its easy set-up and more reliable results. However, the economic and technical costs of the advanced systems and commercial ultra-low adhesive platforms have pushed researchers into pursuing alternatives. Nowadays, polymeric coatings, including poly-hydroxyethyl methacrylate and agar/agarose, are the commonly used polymers for non-adhesive plate fabrication, yet the costs and working solvent or heat-dependent preparation procedures maintain the need for the development of novel biomaterials. Here, we propose a greener and more economical approach for producing non-adherent surfaces and spheroid formation. For this, a plant waste-based biopolymer from quince fruit (Cydonia oblonga Miller, from Rosaceae family) seeds and boron-silica precursors were introduced. The unique water-holding capacity of quince seed mucilage (Q) was enriched with silanol and borate groups to form bioactive and hydrophilic nanocomposite overlays for spheroid studies. Moreover, 3D gel plates from the nanocomposite material were fabricated and tested in vitro as a proof-of-concept. The surface properties of coatings and the biochemical and mechanical properties of the nanocomposite materials were evaluated in-depth with techniques, and extra hydrophilic coatings were obtained. Three different cell lines were cultured on these nanocomposite surfaces, and spheroid formation with increased cellular viability was recorded on day 3 with a >200 & mu;m spheroid size. Overall, Q-based nanocomposites are believed to be a fantastic alternative for non-adherent surface fabrication due to their low-cost, easy operation, and intrinsic hydration layer forming capacity with biocompatible nature in vitro.
URI: https://doi.org/10.1039/d3bm00170a
https://hdl.handle.net/11147/13610
ISSN: 2047-4830
2047-4849
Appears in Collections:Bioengineering / Biyomühendislik
PubMed İndeksli Yayınlar Koleksiyonu / PubMed Indexed Publications Collection
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection

Files in This Item:
File SizeFormat 
Development-of-plantbased.pdf
  Until 2025-01-01
4.53 MBAdobe PDFView/Open    Request a copy
Show full item record



CORE Recommender

SCOPUSTM   
Citations

1
checked on Apr 5, 2024

WEB OF SCIENCETM
Citations

1
checked on Mar 23, 2024

Page view(s)

22
checked on Apr 29, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.