Please use this identifier to cite or link to this item:
https://hdl.handle.net/11147/13374
Title: | Fabrication of Helix Aspersa Extract Loaded Gradient Scaffold With an Integrated Architecture for Osteochondral Tissue Regeneration: Morphology, Structure, and in Vitro Bioactivity [2] | Authors: | Tamburacı, Sedef Perpelek, Merve Aydemir, Selma Baykara, Başak Havıtçıoğlu, Hasan Tıhmınlıoğlu, Funda |
Keywords: | Gradient scaffold Helix aspersa Mucus Osteochondral Slime Bioactivity Biomineralization Computerized tomography Tissue regeneration |
Publisher: | American Chemical Society | Abstract: | Regeneration of osteochondral tissue with its layered complex structure and limited self-repair capacity has come into prominence as an application area for biomaterial design. Thus, literature studies have aimed to design multilayered scaffolds using natural polymers to mimic its unique structure. In this study, fabricated scaffolds are composed of transition layers both chemically and morphologically to mimic the gradient structure of osteochondral tissue. The aim of this study is to produce gradient chitosan (CHI) scaffolds with bioactive snail (Helix aspersa) mucus (M) and slime (S) extract and investigate the structures regarding their physicochemical, mechanical, and morphological characteristics as well as in vitro cytocompatibility and bioactivity. Gradient scaffolds (CHI-M and CHI-S) were fabricated via a layer-by-layer freezing and lyophilization technique. Highly porous and continuous 3D structures were obtained and observed with SEM analysis. In addition, scaffolds were physically characterized with water uptake test, micro-CT, mechanical analysis (compression tests), and XRD analysis. In vitro bioactivity of scaffolds was investigated by co-culturing Saos-2 and SW1353 cells on each compartment of gradient scaffolds. Osteogenic activity of Saos-2 cells on extract loaded gradient scaffolds was investigated in terms of ALP secretion, osteocalcin (OC) production, and biomineralization. Chondrogenic bioactivity of SW1353 cells was investigated regarding COMP and GAG production and observed with Alcian Blue staining. Both mucus and slime incorporation in the chitosan matrix increased the osteogenic differentiation of Saos-2 and SW1353 cells in comparison to the pristine matrix. In addition, histological and immunohistological staining was performed to investigate ECM formation on gradient scaffolds. Both characterization and in vitro bioactivity results indicated that CHI-M and CHI-S scaffolds show potential for osteochondral tissue regeneration, mimicking the structure as well as enhancing physical characteristics and bioactivity. © 2023 The Authors. Published by American Chemical Society. | Description: | Article; Early Access | URI: | https://doi.org/10.1021/acsabm.2c01050 https://hdl.handle.net/11147/13374 |
ISSN: | 2576-6422 |
Appears in Collections: | Chemical Engineering / Kimya Mühendisliği PubMed İndeksli Yayınlar Koleksiyonu / PubMed Indexed Publications Collection Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection |
Files in This Item:
File | Size | Format | |
---|---|---|---|
FundaTihminlioglu.pdf | 9.78 MB | Article | View/Open |
CORE Recommender
SCOPUSTM
Citations
6
checked on Dec 20, 2024
WEB OF SCIENCETM
Citations
6
checked on Dec 21, 2024
Page view(s)
204
checked on Dec 23, 2024
Download(s)
100
checked on Dec 23, 2024
Google ScholarTM
Check
Altmetric
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.