Please use this identifier to cite or link to this item: https://hdl.handle.net/11147/12770
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAldulaimi, W. A. S.en_US
dc.contributor.authorOkatan, Mahmut Barıştr
dc.contributor.authorŞendur, Kürşattr
dc.contributor.authorOnbaşlı, Mehmet Cengiztr
dc.contributor.authorMısırlıoğlu, İbrahim Burçtr
dc.date.accessioned2023-01-18T12:42:14Z-
dc.date.available2023-01-18T12:42:14Z-
dc.date.issued2022-12-
dc.identifier.issn2040-3364-
dc.identifier.urihttps://doi.org/10.1039/d2nr02768b-
dc.identifier.urihttps://hdl.handle.net/11147/12770-
dc.descriptionWASA and IBM acknowledge the financial support by TUBITAK through project 117F042.en_US
dc.description.abstractNew high density storage media and spintronic devices come about with a progressing demand for the miniaturization of ferromagnetic structures. Vortex ordering of magnetic dipoles in such structures has been repeatedly observed as a stable state, offering the possibility of chirality in these states as a means to store information at high density. Electric pulses and magnetoelectric coupling are attractive options to control the chirality of such states in a deterministic manner. Here, we demonstrate the chirality reversal of vortex states in ferromagnetic nanodiscs via pulsed electric fields using a micromagnetic approach and focus on the analysis of the energetics of the reversal process. A strong thickness dependence of the chirality reversal in the nanodiscs is found that emanates from the anisotropy of the demagnetizing fields. Our results indicate that chiral switching of the magnetic moments in thin discs can give rise to a transient vortex-antivortex lattice not observed in thicker discs. This difference in the chirality reversal mechanism emanates from profoundly different energy barriers to overcome in thin and thicker discs. We also report the polarity-chirality correlation of a vortex that appears to depend on the aspect ratio of the nanodiscs.en_US
dc.language.isoenen_US
dc.publisherRoyal Society of Chemistryen_US
dc.relation.ispartofNanoscaleen_US
dc.rightsinfo:eu-repo/semantics/embargoedAccessen_US
dc.subjectAspect ratioen_US
dc.subjectElectric fieldsen_US
dc.subjectFerromagnetic materialsen_US
dc.subjectChiralityen_US
dc.titleSize driven barrier to chirality reversal in electric control of magnetic vortices in ferromagnetic nanodiscsen_US
dc.typeArticleen_US
dc.authorid0000-0002-9421-7846en_US
dc.institutionauthorOkatan, Mahmut Barıştr
dc.departmentİzmir Institute of Technology. Materials Science and Engineeringen_US
dc.identifier.wosWOS:000898311700001en_US
dc.identifier.scopus2-s2.0-85144675461en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıtr
dc.identifier.doi10.1039/d2nr02768b-
dc.identifier.pmid36516064-
dc.relation.issn2040-3364en_US
dc.description.volume15en_US
dc.description.issue2en_US
dc.description.startpage707en_US
dc.description.endpage717en_US
dc.identifier.wosqualityQ1-
dc.identifier.scopusqualityQ1-
item.fulltextWith Fulltext-
item.grantfulltextembargo_20251201-
item.languageiso639-1en-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.openairetypeArticle-
crisitem.author.dept03.09. Department of Materials Science and Engineering-
Appears in Collections:Materials Science and Engineering / Malzeme Bilimi ve Mühendisliği
PubMed İndeksli Yayınlar Koleksiyonu / PubMed Indexed Publications Collection
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File Description SizeFormat 
d2nr02768b.pdf
  Until 2025-12-01
Article6.71 MBAdobe PDFView/Open    Request a copy
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

1
checked on Nov 15, 2024

WEB OF SCIENCETM
Citations

1
checked on Nov 9, 2024

Page view(s)

226
checked on Nov 18, 2024

Download(s)

2
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.