Please use this identifier to cite or link to this item:
Title: Fabrication of 3D Printed poly(lactic acid) strut and wet-electrospun cellulose nano fiber reinforced chitosan-collagen hydrogel composite scaffolds for meniscus tissue engineering
Authors: Güneş, Oylum Çolpankan
Kara, Aylin
Baysan, Gizem
Hüsemoğlu, Reşit Buğra
Akokay, Pınar
Ziylan Albayrak, Aylin
Ergür, Bekir Uğur
Havitçioğlu, Hasan
Keywords: 3D printer
Composite hydrogels
Meniscus tissue engineering
Publisher: SAGE Publications
Abstract: The main goal of the study was to produce chitosan-collagen hydrogel composite scaffolds consisting of 3D printed poly(lactic acid) (PLA) strut and nanofibrous cellulose for meniscus cartilage tissue engineering. For this purpose, first PLA strut containing microchannels was incorporated into cellulose nanofibers and then they were embedded into chitosan-collagen matrix to obtain micro- and nano-sized topographical features for better cellular activities as well as mechanical properties. All the hydrogel composite scaffolds produced by using three different concentrations of genipin (0.1, 0.3, and 0.5%) had an interconnected microporous structure with a swelling ratio of about 400% and water content values between 77 and 83% which is similar to native cartilage extracellular matrix. The compressive strength of all the hydrogel composite scaffolds was found to be similar (∼32 kPa) and suitable for cartilage tissue engineering applications. Besides, the hydrogel composite scaffold comprising 0.3% (w/v) genipin had the highest tan δ value (0.044) at a frequency of 1 Hz which is around the walking frequency of a person. According to the in vitro analysis, this hydrogel composite scaffold did not show any cytotoxic effect on the rabbit mesenchymal stem cells and enabled cells to attach, proliferate and also migrate through the inner area of the scaffold. In conclusion, the produced hydrogel composite scaffold holds great promise for meniscus tissue engineering.
Description: The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: This work was supported by the Scientific and Technological Research Council of Turkey (TUBITAK) with the project number of 117M301.
Appears in Collections:Bioengineering / Biyomühendislik
PubMed İndeksli Yayınlar Koleksiyonu / PubMed Indexed Publications Collection
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection

Files in This Item:
File Description SizeFormat 
  Until 2025-01-01
Article File2.27 MBAdobe PDFView/Open    Request a copy
Show full item record

CORE Recommender


checked on Jun 21, 2024


checked on Jun 15, 2024

Page view(s)

checked on Jun 17, 2024

Google ScholarTM



Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.