Please use this identifier to cite or link to this item:
https://hdl.handle.net/11147/12666
Title: | Hollow nano-CaCO3's VOC sensing properties: A DFT calculation and experimental assessments | Authors: | Bayram, Abdullah Farzaneh, Amir Esrafili, Mehdi D. Okur, Salih Özdemir, Ekrem |
Keywords: | Density functional theory Langmuir adsorption isotherm Quartz crystal microbalance VOC adsorbents |
Publisher: | Elsevier | Abstract: | Air is the most critical and necessary for life, and air quality significantly impacts people's health. Both indoor and outdoor pollution frequently contain volatile organic compounds (VOCs). Such contaminants provide immediate or long-term health risks to the living system. The present study investigates sorption characteristics of VOCs on hollow nano calcite (CaCO3) particles with 250 nm and 40 nm pore sizes to remove from the air ambient using the quartz crystal microbalance (QCM) technique at room temperature both experimentally and theoretically. The results were supported by density functional theory (DFT), and adsorption-desorption characteristics were studied with Langmuir adsorption isotherms. The QCM measurements showed a stable signal without having hysteresis, and the response of polar VOCs on hollow nano-CaCO3 particles such as ethanol, propanol, and humidity with higher polarity was less compared to solvents such as chloroform and dichloromethane, which revealed that the surfaces of CaCO3 particles have mostly non-polar properties. CaCO3 surface and VOC molecule interactions overlap with the Langmuir model. With DFT calculations, VOC and water molecule adsorption changes the CaCO3 Egap. Our findings show that the ΔEgap values increase as chloroform > dichloromethane > propanol > ethanol > water. This order suggests that the sensing response of the hollow CaCO3 structure is linearly proportional to the adsorption energies of VOC and water. The linear adsorption characteristics, high sensing response, and short recovery time illustrated that the newly synthesized nano-CaCO3 could be implemented as a new VOC adsorbent material for health, environmental sustainability, and in vitro microbiome cultures. | URI: | https://doi.org/10.1016/j.chemosphere.2022.137334 https://hdl.handle.net/11147/12666 |
ISSN: | 0045-6535 |
Appears in Collections: | Chemical Engineering / Kimya Mühendisliği PubMed İndeksli Yayınlar Koleksiyonu / PubMed Indexed Publications Collection Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
1-s2.0-S0045653522038279-main.pdf Until 2025-02-01 | Article File | 3.77 MB | Adobe PDF | View/Open Request a copy |
CORE Recommender
SCOPUSTM
Citations
7
checked on Nov 22, 2024
WEB OF SCIENCETM
Citations
6
checked on Oct 26, 2024
Page view(s)
192
checked on Nov 25, 2024
Google ScholarTM
Check
Altmetric
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.