Please use this identifier to cite or link to this item: https://hdl.handle.net/11147/12229
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKarataş, Arzumen_US
dc.contributor.authorŞahin, Serapen_US
dc.date.accessioned2022-08-01T12:09:32Z-
dc.date.available2022-08-01T12:09:32Z-
dc.date.issued2022-
dc.identifier.issn2169-3536-
dc.identifier.urihttps://doi.org/10.1109/ACCESS.2022.3170476-
dc.identifier.urihttps://hdl.handle.net/11147/12229-
dc.description.abstractTracking community evolution can provide insights into significant changes in community interaction patterns, promote the understanding of structural changes, and predict the evolutionary behavior of networks. Therefore, it is a fundamental component of decision-making mechanisms in many fields such as marketing, public health, criminology, etc. However, in this problem domain, it is an open challenge to capture all possible events with high accuracy, memory efficiency, and reasonable execution times under a single solution. To address this gap, we propose a novel method for tracking the evolution of communities (TREC). TREC efficiently detects similar communities through a combination of Locality Sensitive Hashing and Minhashing. We provide experimental evidence on four benchmark datasets and real dynamic datasets such as AS, DBLP, Yelp, and Digg and compare them with the baseline work. The results show that TREC achieves an accuracy of about 98%, has a minimal space requirement, and is very close to the best performing work in terms of time complexity. Moreover, it can track all event types in a single solution.en_US
dc.language.isoenen_US
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en_US
dc.relation.ispartofIEEE Accessen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectCommunity evolutionen_US
dc.subjectCommunity trackingen_US
dc.subjectLSH with minhashingen_US
dc.titleA novel efficient method for tracking evolution of communities in dynamic networksen_US
dc.typeArticleen_US
dc.authorid0000-0001-6433-3355en_US
dc.authorid0000-0002-8859-8435en_US
dc.authoridWOS:000791723100001-
dc.institutionauthorKarataş, Arzumen_US
dc.institutionauthorŞahin, Serapen_US
dc.departmentİzmir Institute of Technology. Computer Engineeringen_US
dc.identifier.wosWOS:000791723100001en_US
dc.identifier.scopus2-s2.0-85129689497en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.doi10.1109/ACCESS.2022.3170476-
dc.contributor.affiliation01. Izmir Institute of Technologyen_US
dc.contributor.affiliation01. Izmir Institute of Technologyen_US
dc.relation.issn2169-3536en_US
dc.description.volume10en_US
dc.description.startpage46276en_US
dc.description.endpage46290en_US
dc.identifier.wosqualityQ2-
dc.identifier.scopusqualityQ1-
item.fulltextWith Fulltext-
item.grantfulltextopen-
item.languageiso639-1en-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.openairetypeArticle-
crisitem.author.dept03.04. Department of Computer Engineering-
crisitem.author.dept03.04. Department of Computer Engineering-
Appears in Collections:Computer Engineering / Bilgisayar Mühendisliği
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File Description SizeFormat 
A_Novel_Efficient_Method.pdfArticle5.88 MBAdobe PDFView/Open
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

2
checked on Nov 15, 2024

WEB OF SCIENCETM
Citations

1
checked on Nov 9, 2024

Page view(s)

912
checked on Nov 18, 2024

Download(s)

120
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.