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ABSTRACT Tracking community evolution can provide insights into significant changes in community
interaction patterns, promote the understanding of structural changes, and predict the evolutionary behavior
of networks. Therefore, it is a fundamental component of decision-making mechanisms in many fields such
as marketing, public health, criminology, etc. However, in this problem domain, it is an open challenge to
capture all possible events with high accuracy, memory efficiency, and reasonable execution times under a
single solution. To address this gap, we propose a novel method for tracking the evolution of communities
(TREC). TREC efficiently detects similar communities through a combination of Locality Sensitive Hashing
and Minhashing. We provide experimental evidence on four benchmark datasets and real dynamic datasets
such as AS, DBLP, Yelp, and Digg and compare them with the baseline work. The results show that TREC
achieves an accuracy of about 98%, has a minimal space requirement, and is very close to the best performing
work in terms of time complexity. Moreover, it can track all event types in a single solution.

INDEX TERMS Community evolution, community tracking, locality sensitive hashing with minhashing,
LSH with minhashing.

I. INTRODUCTION
Many real-world networks, biological networks, and social
networks can be represented by graphs. These networks con-
tain a dynamic community structure that exhibits natural
partitioning. Each of these partitions defines a community [1]
naturally by groups of vertices with dense connections inter-
nally and sparser connections from other groups in the net-
work.Community detection is identifying these partitions in
the network. The size of communities in the network can grow
or shrink, and new communities can emerge or disappear as
relationships or interactions change over time.

Detecting communities and tracking their evolution over
time is key to understanding relationships between groups,
which is essential for assessing future relationships. These
insights provide valuable information for decision support
mechanisms in many fields such as criminology [2], tar-
geted marketing and smart advertising [3], recommender
systems [4], sociology [5], epidemiology [6], brain net-
works [7], and community evolution prediction [8]–[12].
Most of these applications require accurate results,
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reasonable memory consumption and execution time, and
work with large dynamic networks. To detect the evolution of
communities in dynamic networks, the network data is first
decomposed into time steps, and then a community detection
method is applied to the data of each time step to reveal the
underlying community structure. Later, the evolution of a
community is tracked by finding its similar community(s)
with community matching between ascending time steps.
Then, evolution chains are created to list the communities
during their lifespan. Then, evolution events can be labeled
with types of evolution events. This solution approach can be
classified under the independent community detection and
matching approach in the taxonomy of Dakiche et al. [13],
which classifies methods for tracking community evolution
according to their methodological principles.

From examining related work from 2007 to 2021 (in the
class of independent community detection and matching
approach), some functional criteria for comparison emerge,
such as tracking nonconsecutive communities, k-merge
and k-splits, and identifying all evolutionary types. The
recent works such as the method of Tajeuna et al. [14] and
ICEM [15] satisfy all the functional criteria, while the
recent work WECEM [16] cannot track nonconsecutive
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community evolution. In addition, performance criteria such
as accuracy, memory consumption, and execution time must
also be considered. They all consider accuracy, but only one
of them (ICEM [15]) considers execution time efficiency,
while none of the existing works consider space efficiency.
However, space efficiency is important since the method
should be executed on common computing devices such as
computers and laptops in general qualifications. In this way,
parallelizing the implementation or using cloud solutions is
not necessarily required. This has motivated us to conduct
this study. In this work, a novel, accurate and space-efficient
method with reasonable execution time TREC (Tracking
Evolution of Communities) is proposed to track the con-
secutive and nonconsecutive evolution of communities. This
study uses a combination of two probabilistic techniques
such as Minhashing [17] and Locality Sensitive Hashing
(LSH) [18].

Minhashing is a technique for converting large sets into
small fixed signatures while preserving the similarities
between the sets. LSH is a technique to find approximate
near neighbors with high probability without pairwise match-
ing. In this study, minhashing is used to extract community
signatures to represent communities efficiently and LSH is
modified to find similar communities with high probability
without brute force comparison of community pairs. That is,
LSH is used together withminhashing to reduce the execution
time and memory cost in community matching. Compared
to existing work, extracting signatures of communities by
minhashing consumes less memory and searching for similar
communities is accelerated by filtering out the meaningless
community comparison by LSH. The way LSH with min-
hashing technique used in our study is explained in detail in
section IV.

Since the latest method WECEM [16] cannot track non-
consecutive community evolutions, we do not consider it as
one of TREC’s competitors and do not include WECEM
in our performance analysis. In the performance analysis,
we find that TREC is (i) a very accurate method like that of
Tajeuna et al. [14], (ii) the most space-efficient method in the
literature, and (iii) has a reasonable execution time, which
achieves the second best value among related works after
ICEM [15]. Therefore, it can be said that TREC could be the
most suitable method for tracking community developments
in low memory environments.

The contributions of this study are summarized below:
Space-efficient community representation:The community

signatures are extracted using minhashing technique to con-
sume less memory than the real communities need. In this
way, communities are stored in main memory as short fixed-
length sketches.
Efficient search for similar communities:LSH is adapted to

efficiently identify similar communities based on community
signatures for a queried community signature.
Tracking algorithm:Anaive tracking algorithm is provided

to process LSHwith minhashing results to track the evolution
of consecutive and nonconsecutive communities.

TREC method: A new community evolution tracking
method is presented that is accurate, space-efficient, and
executable in reasonable time. It can track both consecutive
and nonconsecutive evolution and identifies all evolutionary
events.
Complexity analysis:A time and space complexity analysis

for the TRECmethod is performed to show the computational
limitations of the method to potential users and researchers in
the field.
Software profiling: The memory requirements and execu-

tion time of TREC are measured. This shows the real-time
profile of the TREC method.

The structure of the paper is as follows. Section II pro-
vides introductory information and the problem statement.
Section III gives an overview of related work. Section IV
presents the TREC method in detail. Section V presents the
experimental study and discusses the evaluation results of
TREC in terms of algorithmic analysis and experimental
analysis. Section VI provides concluding remarks and some
suggestions for future work.

II. BACKGROUND AND PROBLEM FORMULATION
In this section, introductory information and the problem
statement are presented. Subsection II.A explains basic
concepts and definitions of the problem domain. Then, in
subsection II.B, the problem formulation is given. Next,
in subsection II.C, the evaluation criteria for trackingmethods
are presented. Finally, in subsection II.D, the relationship
between the similarity threshold of community signatures and
LSH is presented.

A. CONCEPTS AND DEFINITIONS
Depending on their nature, networks can be represented as
static or dynamic graphs. While a static graph is just a snap-
shot of the network for a given time interval, a dynamic
graph is an ordered sequence of static graphs over time to
capture the temporal properties of the network. In this study,
all dynamic networks used are unweighted and undirected.
Both the vertices and the edges are not static and we assume
that they can change over time. Dynamic networks inherently
contain a community structure. The term ‘‘community’’ is
generally defined as a subgroupwhose connections within the
network are tight but only loosely connected to the rest of the
network, and which has at least three members. Community
structures can be of different natures, such as overlapping and
nonoverlapping communities. In an overlapping community
structure, a member may belong to more than one commu-
nity. In a nonoverlapping community structure, each mem-
ber belongs to only one community. Community detection
divides a network graph into subgroups based on the densities
of the edge connections among vertices in the network. For
instance, in social networks, the vertices of a subgroup are
members of a community, and edges between two vertices
in these subgroups define a ’friendship’ relation. The easiest
way to track the evolution of communities is first to discover
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communities and then match them based on the similarity of
their members over time.

The Jaccard similarity (JS) is used to determine the simi-
larity of members between the two communities by (1).

JS =
C i
t1 ∩ C

k
t2

C i
t1 ∪ C

k
t2

. (1)

where C i
t1 and C

k
t2 are the compared communities, (i, k) are

the numbers identifying the communities, and (t1, t2) are the
observed time steps of these communities. JS takes real values
between 0 and 1, where 0 means that the communities are
completely different and 1 means that they are completely the
same with respect to their members. The λ is the similarity
threshold between a pair of communities. If JS ≥ λ, then
two communities are accepted as similar. In other words,
λ is the member-based similarity threshold of JS for two
communities.

The evolution of a community is represented by the
sequence of tracked relationships between communities
(e.g., matching communities) over time steps. For example,
the evolution of community C1

t from time t = 1 to t = 5 can
be represented as C1

t = C1
1 ,C

577
2 , · · · ,C2800

5 . The problem
of tracking communities is thus defined as detecting a set of
similar communities at specific time steps and tracking their
evolutionary behavior over the lifetime of a dynamic network.

The relationships between communities may change over
time, so a community may experience some critical events.
In this study, the rate of change in community size is assumed
to be 5% to determine the event type such as ‘‘continue’’,
‘‘growth’’ or ‘‘shrink’’. All critical events are defined in
Table 1 and visualized in Fig. 1. Note that the evolution events
shown in Fig. 1 occur only at two time steps i and j, where
i < j represents two sets of matching communities and the
matches between communities can be one-to-one, one-to-
many, or many-to-one.

B. PROBLEM FORMULATION
Let Gt = (Vt ,Et ) be a graph representing a static net-
work, where ‘‘Vt ’’ is the set of vertices and ‘‘Et ’’ is the
set of edges at a particular time step t . A dynamic net-
work G can be denoted as a sequence of static networks
such as G = G1,G2, · · · ,GtimeStepCount where t =
1, 2, · · · , timeStepCount . A community is a subset of densely
connected vertices of each time graph Gt while it is only
loosely connected to the rest of Gt . There may be a number
of k distinct communities belonging to the same Gt . A com-
munity detection method partitions the time graph Gt into
densely connected subgraphs (e.g., communities) such Ct =
Ct1,Ct2, · · · ,Ctk where each community C i

t ∈ Ct , i =
1, · · · , k with vertex set and edge set of each community
C i
t = (V i

t ,E
i
t ) as C

i
t ⊆ Gt .

C. EVALUATION CRITERIA FOR THE TRACKING METHODS
The methods for tracking evolution of communities in the
RelatedWork section are characterized using some functional

TABLE 1. Event types for evolution of communities.

criteria as follows. Based on this characterization, the meth-
ods are compared and functionally evaluated.
Criterion #1 Community structure: Community structure

such as overlapping or nonoverlapping; the type of network
affects the community detection algorithm and the commu-
nity tracking method used.
Criterion #2 Tracking nonconsecutive evolutions: The

ability to track nonconsecutive communities. If a commu-
nity is observed at each time step, that community evolves
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FIGURE 1. An illustration of community evolution events where i and j represent time steps where i < j .

consecutively and all tracking methods can track it natu-
rally. Nonconsecutiveness is the situation where a community
evolves intermittently. That is, the community is observed at
time t and then at time t+ 2 or later, rather than at time t+ 1.
The expected solution should be able to track both types of
communities.
Criterion #3 Coverage of types of evolution events: The

ability to detect all event types with one solution method.
Note that all possible event types are listed in Table 1.
Criterion #4 Tracking k-Community merge/split: Support

event detection for k-community merge and k-community
split, where k > 2, since community merge/split can occur
between more than two communities in real networks.

D. SIMILARITY PRESERVING COMMUNITY SIGNATURES
Member sizes are generally large for real networks such as
social networks, citation networks, etc. If networks include
hundreds of thousands or millions of community members,
it may not be possible to store members of communities in
the main memory to process. Even if the members fit in the
memory, the computation of Jaccard Similarity-JS of each
community pair may be infeasible. To overcome these prob-
lems, communities should be replaced with more miniature
representations where the similarity between the community
pairs should be preserved.

Minhashing [17] is one of the solutions to convert each
community into a small signature with a group of hash func-
tions. The goal of minhashing is to provide a fast approxima-
tion to the Jaccard similarity between any community pair
without computing the unions and the intersections of the
community pairs. Instead, minhashing once creates a min-
hash signature for each community and uses it to approximate
the similarity.

MinHash has a surprising property, according to which
the probability that the MinHash of random permutation

produces the same value for the two communities equals the
Jaccard Similarity value of those communities.

Pr(sig[Cx
t1] = sig[Cy

t2]) (2)

Let X be a set of common minhashes of both communi-
ties, and Y be a set of uncommon.Then the probability of
the minhash signature of two communities being the same
is #ofX

#of (X+Y ) . Jaccard similarity of two communities is the
common number of members in both communities (# of X)
divided by the total number of members in both communities
(# of (X+Y)). Therefore, (2) holds true, which shows the
similarity of the community pairs is preserved. The proof of
(2) can be found in reference [19]. Note that the creation of
minhash signatures is explained in Section IV.B.

E. THE RELATION BETWEEN SIMILARITY THRESHOLD
AND LOCALITY SENSITIVE HASHING
Searching for similar communities by pairwise comparison
of all vertices of communities is a brute force procedure and
requires a (timeStepCount− 1)× n2 comparison. Comparing
minhash signatures of communities instead of checking all
vertices of these community pairs (timeStepCount − 1)× c2

obviously takes less time, but it is a brute force technique.
There is a need for an effective solution to find similar
community signatures for a given community to get rid of
the brute force approach. Since LSH is an efficient technique
to find near neighbors, we adapt LSH to find likely similar
communities without pairwise comparison of community sig-
natures. This adaptation and the theoretical analysis of LSH
are described below.

LSH table is a signature matrix (sig[]) that contains the
minhash signatures of all communities in the network. That is,
each column of sig[] is a signature of a particular community.
Thus, there is a need to match these signatures. A general
approach of the LSH technique is to hash minhash signatures
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such that similar signatures are more likely to be hashed into
the same bucket than dissimilar signatures. For this reason,
sig[] is first divided into b bands, where each band contains
the same number of r rows, where h = b × r and h is
the number of universal hash functions used. A part of a
minhash signature whose length is r within a band is called
a ‘‘pickle’’. Then, LSH takes pickles and hashes them into
a large number of buckets. In this way, the same pickles
are hashed into the same buckets for each band. If there
is at least one pickle with minhash signatures of a pair of
different communities in the same bucket in the same band,
they are considered as candidates for similarity. When LSH is
queried for similar communities of a given community, only
candidate pairs are returned. However, there is a possibility
of false positives since the dissimilar pairs are in the same
bucket. On the other hand, false negatives may occur if some
similar signature pairs cannot be hashed into the same bucket.
Note that the same hash function can be used for all bands,
but it is necessary to use separate bucket collections for each
band. The application of minhashing and LSH techniques
in TREC is explained in detail with examples (Table 5 and
Fig. 3) in Section IV.

LSHST = (
1
b
)
( 1r )

(3)

The pickles in the same buckets (candidate communities
to be similar) must exceed a threshold LSHST for similarity.
That is, the candidate communities for a given community
are at least LSHST similar with certain probabilities. The
relationship between LSHST , b and r is given in (3), and the
values of b and r are chosen experimentally to obtain the
desired LSHST .

Table 2 shows the JS relationship between the communities
corresponding to the different chosen λ-values and the num-
ber of matching communities, and consequently the number
of communities to be tracked, in the BirthDeath benchmark
dataset. Note that the dataset is explained in Section V.
As can be seen from the table, the number of matching
communities and consequently the number of communities
to be tracked decreases with increasing λ-value, as expected,
because the higher the threshold, the fewer matches there are.
Therefore, the accuracy of community tracking decreases.
However, the execution time efficiency increases as fewer
communities need to be tracked. Therefore, the λ-value is
important to determine the accuracy bounds or the target time
efficiency of the proposed solution.

In this study, LSHST is chosen as 0.1(e.g.,10%) because we
want to identify all community signature pairs whose simi-
larity is at least LSHST , and include them in the community
matching process to ensuremaximum accuracy in community
tracking. In the tracking phase, JS of possibly similar commu-
nities is calculated by processing all members (vertices) of the
community pairs. If the value is at least 0.1 (e.g., λ = 10% =
0.1), then they are matched assuming that they are similar.
The analysis results show that λ-values of up to 0.3 can
be chosen for the benchmark dataset. However, we choose

TABLE 2. The effect on λ on tracking evolution of communities.

0.1 as the threshold for JS between community pairs for all
our datasets for two reasons. First, we want to detect even
small changes that lead to community evolution. Second,
we believe that λ = 0.1 is a good threshold for similarity
since it is used by our competing methods in Section V and
the paper provides the benchmark datasets [20].

1− (1− sr )b (4)

LSH guarantees that communities that are either equal to
or greater than LSHST are returned with a certain probability
value. The probability of a community signature pair becom-
ing a candidate that has a percent similarity of s is calculated
by (4), where s ≥ LSHST . The banding analysis of LSH is
described in detail in [19]. The probabilities of signature pairs
detected by LSHwith similarity of s are calculated and shown
in Table 3, where LSHST = 0.1.
As can be seen in Table 3, LSH recognizes community-

signature pairs that have a similarity of 10%with a probability
of 36%. LSH also recognizes the pairs with 20% similarity
with a probability of 84%. Moreover, it recognizes the pairs
that have a similarity of 40% or more with a probability of
100%. From the table, it can be seen that as the similarity
of the community signature pairs increases, the recognition
performance of LSH also increases.

TABLE 3. Probabilities of the signature pairs detected by LSH.

III. RELATED WORK
A recent taxonomy introduced by Dakiche et al. [13] divides
methods for tracking community evolution into four groups
according to their methodological principles, which are
described below:

(i)The methods that use the independent community detec-
tion and matching approach [14]–[16], [20]–[24] divide the
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network data into time steps and then run a community
detection method on the data of each time step to reveal the
underlying community structures. Later, the evolution of a
community in these time steps is tracked in ascending order
by finding its similar community(s) in the next time steps,
which is called community matching.

(ii) The methods that use the dependent community dis-
covery approach [25]–[27] use the network data from the
current time step and the known community structure from
the previous time step to discover the related communities.

(iii) The methods that use the simultaneous community
detection approach [28]–[30] first construct a single graph for
all time steps of the network and then run a static community
detection method on this single graph.

(iv) The methods that use a dynamic community detection
approach [31]–[33] work with temporal networks. They run
a community detection method on the data of the first time
step, and then evaluate added/deleted members and connec-
tions/relationships of subsequent time steps as updates to the
first detected community structures.

Our proposed method belongs to group (i) in the taxon-
omy of Dakiche et al. Therefore, related methods for track-
ing community evolution using the independent community
detection andmatching approach are presented and compared
in the rest of this section.

Table 4 summarizes the characteristics of the most com-
monly used and the most recent methods from 2007 to 2021.
The columns of the table contain the names of the methods
presented in related works. The attribute Year in the second
row indicates the publication date of the method. Attribute
criterion #1 indicates whether the communities overlap or
not (are disjoint), and they are represented in the table by
‘‘O.’’ and ‘‘NO’’, respectively. Attribute criterion #2 indi-
cates whether the method tracks nonconsecutively evolving
communities, since all methods track consecutively evolv-
ing communities. Attribute criterion #3 indicates whether or
not the method can detect all types of evolutionary events.
Attribute criterion #4 indicates whether the method is able
to detect k-community merge and splits. Attribute Used Sim-
ilarity Metric represents the similarity measure used by the
tracking method to determine the similarity of a pair of
communities.

As can be seen from Table 4, some methods work with
nonoverlapping communities [14]–[16], [20], [21], and [22],
and the others with overlapping communities [23], [24].
While all methods track consecutively emerging commu-
nities, only some methods ( [14], [15] and [20]) are able
to track nonconsecutively emerging communities. However,
only the method of Greene et al. [20] is limited to detect-
ing the nonconsecutive evolution of a community for two
consecutive snapshots. For criterion #3, the ability to detect
events, [14]–[16], [23], and [24] can detect all evolution
events, but [20]–[22] do not detect ‘‘shrink’’/‘‘growth’’ and
‘‘continue’’ events, respectively. For criterion #4: The meth-
ods [20], [21] cannot detect whether k-community merge
and split occurs, and the others support k-community merge

and splits. However, in real networks, k-communities can
merge and a community can split into k-communities. As for
the similarity metric used, Jaccard similarity is the most
common metric among the methods. [22] accepts a pair of
communities as similar if their common members have a
proportion of k (i.e., a predefined similarity threshold) or
more in the largest community. The inclusion measure of
GED [23] combines both the quantity (i.e., how many mem-
bers of one community belong to another) and the qual-
ity of community members (i.e., the social importance of
community members such as degree of centrality, degree of
density, page rank). ICEM [15] and WECEM [16] simply
calculate similarity using the ratio of intersection to size of a
community.

In summary, some of the newer methods, such as
Tajeuna et al. [14] and ICEM [15], meet all of the func-
tional criteria listed in Section II.C and Table 4. The most
recent work whereas WECEM [16] cannot track nonconsec-
utive evolutions and due to that reason it is not considered
as one of the competing works and is not considered in
our performance analysis for TREC. In terms of perfor-
mance, the method of Tajeuna et al. [14] focuses on accu-
racy, while the ICEM method [15] focuses on execution
time efficiency and accuracy. But none of the related works
consider the accuracy of tracking results, space efficiency,
and execution in reasonable time while performing all desired
functions simultaneously. This is a shortcoming in a low
memory environment, and we focus on this shortcoming in
this paper.

IV. TRACKING EVOLUTION OF COMMUNITIES
The task of tracking community evolution can be divided into
three main parts, namely network representation, community
detection and evolution analysis. In network representation,
a dynamic network is represented as a sequence of static
networks by decomposing the network into time steps. In the
second step, an existing static community detection method
is applied to all time steps in the network and the underlying
community structure of the network is revealed. In this study,
we use Louvain method [34] for community detection in
all time steps because it is one of the best methods among
community detection methods in terms of execution time and
accuracy [35], [36]. Since Louvain is executed once in each
time step of a dynamic network, there is no need to worry
about the nondeterminism of Louvain. However, there is no
obligation to use the Louvain algorithm. Instead, any method
can be used to detect disjoint communities. The evolution
analysis step consists of two parts, namely uncovering the
evolution chain of communities and labeling evolutionary
events. In this chapter, we focus on the evolution analysis part
and how we perform it, since the network representation step
and the community detection step are common to tracking
methods.

Note that the community detection method used can be
applied to both nodes and edges and does not affect the
evolution analysis. However, in the evolution analysis, we are
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TABLE 4. Overview of the functional aspects of the mainstream and latest competitor methods.

FIGURE 2. Illustration of community vector v .

only interested in the vertices of the communities, since we
detect the relationships of the revealed communities over time
based on the vertices.

In the following sections, we explain how we track the
evolution of communities and detect evolution events.

A. REPRESENTING COMMUNITIES
The result of the community detection is entered into the
evolution analysis step. That is, the text files containing the
vertex IDs (members of a community listed in a row, as shown
in Fig. 2) of all detected communities must be loaded into
main memory as a single community vector v. The vector v
indicates which community (C i

t ) belongs to which time step,
as shown in Fig. 2.

Each line of v, the members (vertices) of the identified
communities are listed in order. Note that the members are
not ordered. In the notationC i

t , the subscripts t and i represent
the time step and ID of the community, respectively. The
members of the communities detected for each time step t
are stored in v. Therefore, the space required to store all the
detected communities for the network is S(n) = t × n =
O(t × n) where n is the total number of unique vertices in
the network. The size of v is c× t . The execution time cost of

creating community vectors requires each vertex to be visited
at most t times, T (n) = O(t × n) = O(n).

B. BUILDING MINHASH SIGNATURES
Minhashing is a technique for compressing large datasets into
fixed-length sketches called ‘‘signatures’’. It was introduced
by Broder [17], whose implementation initially dealt with
binary vectors but was extended to integer vectors and con-
tinuous variables [37]. The general implementation using bit
vectors is described in reference [19]. In this study, we imple-
ment minhashing with integer community vectors, where
each vector contains the members of a community (a row
of v), since all members ID’s are positive integers.

Minhashing uses several universal hash functions (H) such
asHi(v) = av+b(mod p), i = 1, · · · , hwhere h is number of
hash functions used, a, b are random integers, and p is a prime
number where greater than or equal to the number of unique
vertices in the dataset. Using minimum hash values for v
satisfies the random sampling requirement for the community
representation. Therefore, each community integer vector
(containing all the member IDs of the community) is passed
through these h-functions and the minimum hash values for
each of the hash functions used are selected. At the end of this
process, a two-dimensional signature matrix sig[] is obtained
as seen in Table 5.

Table 5 shows an example of a signature matrix sig[]. The
columns of the matrix represent community signatures, the
rows represent the hash functions used, and each cell contains
the associatedminimum hash result for the hash function over
these communitymembers. tcc(total number of communities)
is the number of communities and tsc is the total number of
time steps in the dataset. The cost of creating these minhash
signatures is manageable and their complexity is represented
as T (n) = h × n × t = O(n) since h and t are constant, and
where h is the number of hash functions used in a signature,
n is the number of unique vertices in the dataset, and t is
the number of time steps into which the dataset has been
divided.The storage cost of the signature matrix is S(n) =
O(h× c× t) because the length of each signature is h, and in
total, there are at most c× t communities.
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TABLE 5. An example of the signature matrix, is sig[].

C. BUILDING LSH TABLE AND BUCKETS
LSH is a technique originally introduced by Indyk and Mot-
wani [18] for nearest neighbor search. The combination of
LSH and minhashing technique is an elegant method for
identifying near neighbors in Jaccard space. Therefore, LSH
with minhashing technique is adapted for the first time in
this study to identify similar communities. The sig[] after
minhashing is divided into bands and pickles are identified
as shown in Fig. 3(a). Then, same pickles in the same band
are assigned to the same buckets, as shown in Fig. 3(b).
If two communities are present in at least one bucket, they
are considered as a candidate pair for similarity.

This step includes the generation of pickles, adding these
pickles into a hash map, and putting the community identi-
fication numbers into the same row of a bucket. Note that a
bucket is represented by a cell of buckets vector. Therefore,
the time complexity of the generation of pickles dominates,
and the execution time complexity of this step is T (n) =
O(h × n × t) = O(n). Since this step needs to store buckets
vector, its space cost is S(n) = O(c × t) = O(v), where v is
the overall communities.

D. TRACKING SIMILAR COMMUNITIES OVER TIME
The pseudocode for tracking the evolution of communities
is described in Algorithm 1. For each community to be
tracked, a set of communities in its evolution chain is recorded
(Line 3), and all time steps are traversed to account for
nonconsecutive evolution by traversing successive time steps
(Line 4, Line 5-Line 20). LSH buckets are queried for the
actively tracked community in the set (Line 8). The LSH
buckets are used to obtain the list of candidate communities
(Line 8). The JS between the actively tracked community
and its candidates is checked (Line 9 - Line 11). If they are
similar, the candidate community is added to the evolution set
(Line 12) and the candidate community is removed from the
tracking list (Line 13). After all time steps coming after its
time step have been searched for a community, the evolution
events are determined (Line 21-Line 34) according to the
rules formulated in Table 1. After all time steps have been
processed, S is appended to the tracking list (Line 35) and
S is released for the next community evolution (Line 36).

In summary, themain idea of pseudocode is to filter dissim-
ilar communities via LSH buckets and then check the actual
similarity between community pairs by processing all time
steps starting from the actively processed time step, even for

nonconsecutive evolutions. Although LSH is a probabilistic
technique, it guarantees to identify similar community signa-
tures of a given community with a certain probability, which
is explained in the subsection II.D.

Fig.4(a) and Fig.4(b) show an example of tList and the
corresponding conceptual schema. In each line, there is an
evolution chain of a community. For example, in row 1,
C56
1 has no other subsequent community in its evolution

chain. This means that C56
1 was born and has not been

observed for a single time step during the observation; thus,
it dissolves. Communities C61

1 and C277
1 merge and C1134

2
forms. The community C2026

4 is split into two subcommuni-
ties C2587

5 and C2851
5 .

Note that the tracking task is repeated for all communities
to be tracked (tcc = t × c) and most of the complexity of the
process comes from computing JS(n× log n). Querying LSH
buckets takesO(1) time since it only returns the communities
that are in the index of the queried community ID. Therefore,
the time complexity of the tracking algorithm is T (n) =
t × c× n× log n = O(cn log n), since t is constant and thus
negligible. Since v and LSH buckets are kept in main memory
during the execution of TREC, the total memory required is
S(n) = n + v = O(n + v), where n is the number of unique
vertices in the dataset and v is the vector consisting of all
communities at all time steps.

V. EXPERIMENTAL STUDY
In this section, we first describe the datasets used and the
experimental setup. Then, we evaluate the impact of the LSH
and minhashing techniques on the TRECmethod. Our TREC
method aims to accurately track all types of evolution events
of the dynamic communities, use an efficient memory space,
and run in a reasonable time compared to related works.
Therefore, in this section, we evaluate the performance of
our method both theoretically through complexity analysis
and practically through accuracy analysis and profiling of the
TREC method in terms of memory space and execution time.

A. DATASETS
In this study, both benchmark datasets and real datasets are
used. The details of the datasets are as follows:

The benchmark datasets of Greene et al. [20] are used for
accuracy analysis. They contain ground truth information
about communities at all time steps and are accessible online.
The datasets are constructed from four different synthetic
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Algorithm 1 Tracking Evolution of Communities
Input : L(List of communities to be tracked), λ, LSH , tcs (the number of time steps in the network).
Output: tList (List of tracked communities).

1. foreach community C i
t in L do

2. C i
t ‘‘form’’s

3. S = {C i
t } // S is the set holds the evolution of each C i

t
4. tj = t + 1 // tj shows the time step to be processed
5. while t(j) ≤ tcs do // for processing both consecutive and nonconsecutive time steps
6. let rCommunities be the list of the recent time step communities in S
7. foreach community Ck

tx in rCommunities do // in the case of splitting communities
8. cCommunities = LSH (Ck

tx) // cCommunities is the list of the candidate
communities returned by LSH for Ck

tx
9. foreach community Cc

tc in cCommunities do
10. if tc == tj then
11. if JS(Ctxk , Cc

tc)≥ λ then // similarity is matched the tracked community
and candidate community

12. S = S ∪ Cc
tc // append the matched community to the evolution set

13. L = L − Cc
tc // remove matched communities from the tracking list

14. let mMap hold (a community, its matched communities) as (key, value) pairs respectively.
15. search for Ck

tx in mMap
16. if it is a key in mMap then
17. append Cc

tc to the respective value of mMap
18. else
19. insert (Cc

tx ,C
c
tc) pair into mMap

20. tj = tj + 1

21. mCommunities = mMap(Ck
tx) // mCommunities is the list of communities matching with

Ck
tx

22. if mCommunities == ∅ then // no matching
23. Ck

tx ’’dissolves’’

24. if |mCommunities| ≥ 2 then // based on mMap, more than one matching
25. mc = mCommunities.count(tx < tm)
26. if mc ≥ 2 then // more than one match with communities in next time steps
27. Ck

tx ’’splits’’

28. mc = mCommunities.count(tx > tm)
29. if mc ≥ 2 then // more than one match with communities in previous time steps
30. Ck

tx ’’merges’’

31. if |mCommunities| == 1 and tx < tm then // one to one matching
32. if Ck

tx < Cm
tm then

33. ’’shrinks’’

34. if Ck
tx > Cm

tm then Ck
tx ’’grows’’ else C

k
tx ’’continues’’

35. tList = tList ∪ S
36. S = {}

graphs, each containing five static networks, meaning that
there are five time steps (t) with 15000 vertices (n) to simu-
late nonconsecutively evolving communities, and containing
all types of community evolution events. In the BirthDeath
dataset, the authors randomly create 40 additional commu-
nities and randomly remove 40 communities. In the Expand

dataset (Grow-Shrink), they create graphs in which 40 ran-
domly selected communities grow or shrink by 25%. In the
MergeSplit dataset, the authors simulate 40 communities that
split and 40 communities that merge. In the Nonconsecutive-
ness dataset, they randomly hide 10% of the members at each
time step.
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FIGURE 3. An example of ‘‘how logically LSH with minhashing works’’. (a) LSH table and (b) LSH Buckets.

FIGURE 4. An example of (a) conceptual content of tList (b) its correspondent conceptual schema.

The memory and execution time performance of TREC for
is evaluated on real datasets. These datasets are:
• Autonomous Systems (AS) Dataset [38] contains a daily
communication network of routers from logs. Daily
unweighted, undirected graphs are created from Decem-
ber 1999 to January 2000, where each vertex has a
router identification number and each edge indicates the
relationship between each vertex.

• The DBLP Dataset [39] contains the authors’
co-publications. Using data mining and artificial intel-
ligence domains, unweighted and undirected graphs
between the years 2001 and 2013, where each vertex
represents the authors and each edge represents the co-
authorships and citations of the publications.

• The Yelp Dataset [40] contains user reviews about busi-
nesses, but our study, user friendships are important.

Therefore, monthly unweighted friendship graphs are
constructed for each user who has at least one friend
from October 2013 to July 2014, where each vertex
represents users and each edge represents a friendship.

• The 2009 Digg friendship Dataset [41] contains
information about friendships on the Digg platform.
Bimonthly, undirected, and unweighted friendship
graphs are constructed from July 2007 to July 2009.
Each vertex represents a user and each edge represents
a friendship. The dataset is available in [42].

B. EXPERIMENTAL CONFIGURATION
In these experiments, the rate of change of community size
is assumed to be 5% to determine ‘‘continue’’, ‘‘growth’’,
and ‘‘shrink’’ events. The parameters λ, h, r, b and LSHST
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for TREC are respectively assigned as 0.10, 90, 2, 45, 0.10.
The theoretical relations for the assigned values of these
parameters are explained in Section II in subsection D.

For the experimental analysis, a laptop with the fol-
lowing configuration is used: Intel (R) Core(TM) i7 CPU
@ 2.30 GHz. Processor, 64-bit Win10 operating system
and 16 GB of main memory. Both TREC and its competitors
are implemented in C++ programming language.

C. IMPACT OF USING LSH AND/OR
MINHASHING TECHNIQUES
The following two experiments are conducted to separately
demonstrate and compare the effects of minhashing and/or
LSH techniques on the proposed method TREC in terms of
their accuracy and required execution times. The matrix of
minhash signatures of all detected communities (sig[]) is used
in the following experiments, as shown in Table 5.
Experiment 1: The goal was to demonstrate the effect of

using JS of minhash signatures of community pairs instead of
JS of community pairs with respect to a member-based com-
parison. For this purpose, the method ‘‘minhashing_effect_
TREC’’ was developed. In this method, the event types of
minhash signatures of candidate communities filtered out
from LSH for a tracked community (relative columns of sig[]
in Table 5) are identified after checking JS of the signa-
tures. This shows us how accurate community matching is
when community signatures (in Table 5) are used instead of
the community itself. Note that it is sufficient to update the
computation of JS in Line 11 in Algorithm 1 to compute the
JS signatures of the communities.
Experiment 2: It was used to demonstrate the effect of

LSH technique. For this purpose, the method ‘‘WithoutLSH_
effect_TREC’’ was developed. In this method, there is no
LSH table and its buckets. Instead, JS of all pairs of minhash
signatures (see Table 5) are checked and the community IDs
of similar signatures are stored as pairs in a hash map, where
a key is a community ID and a value is the IDs of their
similar communities. As in the case of Experiment 1, JS of
a community and its similar communities is computed using
the minhash signatures of the communities (see Table 5) and
similar communities are filtered out from this hash map.
This shows us the contribution of LSH technique in terms
of accuracy and execution time. Note that it is sufficient to
change the obtaining of the candidate communities in Line
8 in Algorithm 1 from LSH to the hash map.

The TREC, minhashing_effect_TREC and WithoutLSH_
effect_TREC methods are run separately on the benchmark
datasets. Fig. 5(a) and Fig. 5(b) show the accuracy and exe-
cution time of the methods, respectively.

The execution time of TREC and minhashing_effect_
TREC are very close to each other. minhashing_effect_TREC
consumes slightly less time since it only checks the simi-
larity of signatures. As can be seen in Fig. 5(b), the time
consumption of WithoutLSH_ effect_TREC is ten times
higher than the others, since it has to check the signa-
tures of each community pair. Therefore, the hybrid uses of

FIGURE 5. (a) Accuracy and (b) execution time consumptions of TREC,
minhashing_effect_TREC and WithoutLSH_effect_TREC methods.

TABLE 6. Complexity analysis of the TREC method, and its competitors.

minhashing and LSH in TREC provides better accuracy with
reasonable execution times.

D. PERFORMANCE ANALYSIS
The method of Tajeuna et al. [14] and the ICEMmethod [15]
are considered to be competitors of TREC since they share the
same functional properties, such as tracking type (e.g., both
consecutive and nonconsecutive evolutions), k-community
merging/splitting, detecting all event types, and working with
disjoint community structures. Moreover, both the method
of Tajeuna et al. and ICEM are the most recent methods
in related works. The performance of our TREC method
is studied using the three main components of complexity
analysis, accuracy analysis, and execution time analysis by
comparing the competitors’ methods.

1) COMPLEXITY ANALYSIS
Tracking community evolution requires three basic compo-
nents such as network representation, community detection,
and evolution analysis. Since TREC and its competitors
use the same networks and community detection method
(Louvain [34]), the computational cost of network represen-
tation and community detection is neglected. Therefore, only
the community evolution analysis component is considered in
the complexity analysis. Although Louvain was used in our
experiment, any community detection method for nonover-
lapping communities such as Markov Cluster Algorithm
(MCL) [43], Local Community Mining [44], Infomap [45]
and Leiden [46] can be used.

TREC’s time and space complexity and competing meth-
ods reside in Table 6. Since the ICEM method [15] does not
generate evolution chains, a balance must be found between
ICEM and TREC in terms of generating evolution chains of
communities. Therefore, a subroutine is added to the ICEM
method whose title is concatenated with ‘‘with Evolution
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TABLE 7. Accuracy of the TREC method and its competitors in terms of
NMI values.

Chain’’. In TREC,most of the execution complexity is caused
by the tracking algorithm O(cn log n), where c is the average
number of communities per time step and n is the number of
unique vertices in the dataset. The community representations
and buckets reside in main memory during the execution of
TREC. Therefore, the total space requirement is O(n + v),
where |v| is the total number of communities in community
vector v.

2) ACCURACY ANALYSIS
Since accuracy is one of the most important performance
measures, this subsection examines the accuracy of the TREC
method and compares it to the work of its competitors. For
an objective and consistent comparison, the same benchmark
datasets and community detection method (Louvain [34]) are
used for all competing methods. The NMI [48] values are
used to measure the accuracy of the detected community
structures. NMI [48] is one of the conventional cluster val-
idation techniques for the case where the ground truth cluster
structure is known. It measures the accuracy of the detected
community structure by comparing it with the ground truth
community structure. It takes real values between 0 and 1.
Higher NMI values mean that the tracking is more success-
ful. The NMI values between the ground truth data and the
data obtained after tracking are calculated using a special
software [49].

Table 7 shows the accuracy in terms of NMI values per
dataset achieved by the TREC method and its competitors.
Looking at the average accuracy values of the methods,
we find that the method of Tajeuna et al. [14], ICEM with
Evolution Chain and the TREC method have percentage
accuracy values of 97.6, 97.4 and 97.9 respectively. Hence,
it can be concluded that their performances are almost equal.

3) EXECUTION TIME AND SPACE ANALYSIS
The last performance measure considered is the execution
time and memory performance of TREC and its competi-
tors. Profiling of all methods is performed in the Visual
Studio 2019 Community Edition [49] environment.

Table 8 shows some properties of the dataset as well as
the execution time and memory requirements of the TREC
method and its competitors. Both benchmark datasets and real
datasets are considered in the table. The ‘‘ Dataset Character-
istics column contains the subcolumns ‘‘t’’, ‘‘n’’ and ‘‘c’’ for
each dataset. The subcolumn ‘‘t’’ indicates the number of time

steps that make up the network. The subcolumn ‘‘n’’ indicates
the number of unique vertices each dataset has. The subcol-
umn ‘‘c’’ indicates the number of average communities per
time step. The column ‘‘Methods’’ contains the performance
results of TREC and its competitors such as the method of
Tajeuna et al. method [14] and the ICEM with Evolution
Chain method. The subcolumns ‘‘(1) in MB’’ show the high-
est memory consumption in megabytes and the subcolumns
‘‘(2)’’ show the CPU consumption in seconds/minutes and
hours during the execution time of each method.

Profiling the Tajeuna et al.’s method is performed on the
Yelp dataset until computer’s memory is exhausted. About
six hours (e.g., exactly 356 minutes) pass until this point,
and the highest memory used is 636.2 MB. Therefore, the
actual performance of the method for this dataset cannot be
measured, and the values are marked with ‘‘x’’ sign in the
corresponding cells of Table 8. According to the table, the
Tajeuna et al.’s method has the highest memory and execution
time consumption. The TRECmethod has the lowest memory
consumption while ICEM with Evolution Chain method has
the lowest execution time.

4) EVALUATION OF RESULTS
In this subsection, we evaluate the algorithmic (time and
space analysis) and analytical (accuracy and real-time anal-
ysis including memory and execution time requirements)
results of the TREC method and its competitors.

Table 9 shows the order of complexity of the TRECmethod
and the competingmethods. As can be seen from the table, the
TREC method and the ICEM with Evolution Chain method
have linear complexity in terms of space and time. On the
other hand, the Tajeuna et al.’s method [14] has a quadratic
complexity in terms of time and space. When we compare
the order of complexity of the two methods, we find that the
time complexity of the ICEM with Evolution Chain method
is lower than that of the TREC method, while the space
complexity of the TREC method is lower than that of the
ICEM with Evolution Chain.

Table 8 is a summary table of some of the properties of
the datasets, the highest memory usage in megabytes, and the
execution time for the methods. From the table, it can be seen
that the method of ICEM with Evolution Chain requires the
least execution time and the runtime consumption of TREC
is close to it. However, the method of Tajeuna et al. is the
most time consuming among them and requires more than
750 times execution time for the same datasets. Moreover,
it cannot work with the ‘‘Yelp’’ dataset (although it takes
about 6 hours to reach this point), while the other twomethods
finish their execution in seconds.

Regarding the space requirements of the methods, the
Tajeuna et al. method is the most space-consuming among
them, while the TREC method is the most space-efficient,
as shown in Table 8 and Table 9. The ICEM with Evolution
Chain method requires a memory space that is a constant
multiple of the memory space required by the TRECmethod.
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TABLE 8. The highest memory usage in Mega Bytes during their executions and execution time of the methods.

TABLE 9. Complexity orderings of TREC and competitor methods.

As shown in Table 8, the number of vertices (n) and the
number of time steps (t) are the same in the benchmark
datasets. For the benchmark datasets, the memory require-
ment of the TREC method is almost the same even if the
number of communities (c) is increased, since the commu-
nities are represented by minhashing with small fixed-length
signatures. The most notable difference in the execution time
of the Tajeuna et al.’s method can be seen in the table. That is,
The Tajeuna et al.’s method tends to consumemore execution
time and memory as the number of communities increases.

Large real-world networks, such as social networks or
citation networks, can have hundreds of millions of members.
Given the storage capacity of ordinary computers and laptops,
it may not be possible to store and/or process community
members. In such a situation, the ICEM method is not appli-
cable because it must have a global hash map to track the
actual locations of community members and build the sim-
ilarity lists of communities during execution. TREC, on the
other hand, is applicable in such a situation because the TREC
method only needs to load the community members filtered
by LSH buckets and identified as similar into main memory
to determine the evolution of the communities. As shown in
Table 8 ICEM can provide efficient results for datasets with a
small number of communities, even when the dataset is large.
Looking at theYelp data in Table 8, ICEM requires 352.5MB,
while TREC requires 60.9 MB as memory space. This is a
confirmation of TREC’s efficient memory usage. However,
for dynamic networks with a large number of communities
with a large number of members, TREC may be more advan-
tageous than ICEM, even for communities like Yelp.

VI. CONCLUSION
This study aims to provide a memory-efficient community
evolution tracking method that can identify all types of

evolution events and is still highly accurate. The core idea
behind the method is to reduce the memory space and execu-
tion time in the community matching phase by using LSH and
Minhashing. This use enables a memory-efficient representa-
tion of communities and time-efficient filtering of potentially
similar communities. To the best of our knowledge, this is the
first work that uses LSH and minhashing in combination to
track the evolution of communities.

We perform an experimental evaluation on benchmark and
real datasets and compare the baseline work. The results show
that TREC is helpful in tracking community evolution in low-
memory environments without a loss in accuracy and time.

TREC can also adapt to different domain requirements or
constraints by tuning the threshold for LSH. A higher thresh-
old decreases the number of matching communities, and
consequently, the number of tracked communities is reduced.
Users can easily adjust their implementations according to
the desired accuracy level, acceptable execution time, and
available memory.

Jaccard Similarity computations become cumbersome on
real datasets where the average number of community mem-
bers is large. Therefore, TREC with alternative similarity
measures is a valuable research direction. Moreover, TREC
can be extended to work with overlapping community struc-
tures and machine learning models to predict the future evo-
lution of communities.
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