Please use this identifier to cite or link to this item:
https://hdl.handle.net/11147/9614
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Büyükaşık, Engin | - |
dc.contributor.author | Kafkas Demirci, Gizem | - |
dc.date.accessioned | 2020-07-25T22:17:45Z | |
dc.date.available | 2020-07-25T22:17:45Z | |
dc.date.issued | 2019-07 | |
dc.identifier.issn | 1017-060X | |
dc.identifier.issn | 1735-8515 | |
dc.identifier.issn | 1017-060X | - |
dc.identifier.issn | 1735-8515 | - |
dc.identifier.uri | https://doi.org/10.1007/s41980-018-0161-3 | |
dc.identifier.uri | https://hdl.handle.net/11147/9614 | |
dc.description.abstract | Let R be a ring with unity and let MR and RN be right and left modules,respectively. The module MR is said to be absolutely RN-pure if M circle times NL circle times N is amonomorphism for every extension LR of MR. For a module MR, the subpurity domain of MR is defined to be the collection of all modules RN, such that MR is absolutely RN-pure. Clearly, MR is absolutely RF-pure for every flat module RF and that MR is FP-injective if the subpurity domain of M is the entire class of left modules. As an opposite of FP-injective modules, MR is said to be a test for flatness by subpurity (or t.f.b.s. for short) if its subpurity domain is as small as possible, namely, consisting of exactly the flat left modules. We characterize the structure of t.f.b.s. modules over commutative hereditary Noetherian rings. We prove that a module M is t.f.b.s. over a commutative hereditary Noetherian ring if and only if M/Z(M) is t.f.b.s. if and only if Hom(M/Z(M),S)0 for each singular simple module S. Prufer domains are characterized as those domains all of whose nonzero finitely generated ideals are t.f.b.s. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Springer Verlag | en_US |
dc.relation.ispartof | Bulletin of the Iranian Mathematical Society | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Subpurity domain | en_US |
dc.subject | Flat modules | en_US |
dc.title | On the structure of modules defined by opposites of FP injectivity | en_US |
dc.type | Article | en_US |
dc.institutionauthor | Büyükaşık, Engin | - |
dc.institutionauthor | Kafkas Demirci, Gizem | - |
dc.institutionauthor | Büyükaşık, Engin | |
dc.institutionauthor | Kafkas Demirci, Gizem | |
dc.department | İzmir Institute of Technology. Mathematics | en_US |
dc.identifier.volume | 45 | en_US |
dc.identifier.issue | 3 | en_US |
dc.identifier.startpage | 729 | en_US |
dc.identifier.endpage | 736 | en_US |
dc.identifier.wos | WOS:000468928200007 | en_US |
dc.identifier.scopus | 2-s2.0-85066146780 | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.identifier.doi | 10.1007/s41980-018-0161-3 | - |
dc.relation.doi | 10.1007/s41980-018-0161-3 | en_US |
dc.coverage.doi | 10.1007/s41980-018-0161-3 | en_US |
dc.identifier.wosquality | Q3 | - |
dc.identifier.scopusquality | Q2 | - |
item.fulltext | With Fulltext | - |
item.grantfulltext | open | - |
item.languageiso639-1 | en | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.cerifentitytype | Publications | - |
item.openairetype | Article | - |
crisitem.author.dept | 04.02. Department of Mathematics | - |
Appears in Collections: | Mathematics / Matematik Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Büyükaşık-Kafkas.pdf | Makale (Article) | 393.53 kB | Adobe PDF | View/Open |
CORE Recommender
Page view(s)
268
checked on Nov 18, 2024
Download(s)
92
checked on Nov 18, 2024
Google ScholarTM
Check
Altmetric
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.