Please use this identifier to cite or link to this item: https://hdl.handle.net/11147/9614
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBüyükaşık, Engin-
dc.contributor.authorKafkas Demirci, Gizem-
dc.date.accessioned2020-07-25T22:17:45Z
dc.date.available2020-07-25T22:17:45Z
dc.date.issued2019-07
dc.identifier.issn1017-060X
dc.identifier.issn1735-8515
dc.identifier.issn1017-060X-
dc.identifier.issn1735-8515-
dc.identifier.urihttps://doi.org/10.1007/s41980-018-0161-3
dc.identifier.urihttps://hdl.handle.net/11147/9614
dc.description.abstractLet R be a ring with unity and let MR and RN be right and left modules,respectively. The module MR is said to be absolutely RN-pure if M circle times NL circle times N is amonomorphism for every extension LR of MR. For a module MR, the subpurity domain of MR is defined to be the collection of all modules RN, such that MR is absolutely RN-pure. Clearly, MR is absolutely RF-pure for every flat module RF and that MR is FP-injective if the subpurity domain of M is the entire class of left modules. As an opposite of FP-injective modules, MR is said to be a test for flatness by subpurity (or t.f.b.s. for short) if its subpurity domain is as small as possible, namely, consisting of exactly the flat left modules. We characterize the structure of t.f.b.s. modules over commutative hereditary Noetherian rings. We prove that a module M is t.f.b.s. over a commutative hereditary Noetherian ring if and only if M/Z(M) is t.f.b.s. if and only if Hom(M/Z(M),S)0 for each singular simple module S. Prufer domains are characterized as those domains all of whose nonzero finitely generated ideals are t.f.b.s.en_US
dc.language.isoenen_US
dc.publisherSpringer Verlagen_US
dc.relation.ispartofBulletin of the Iranian Mathematical Societyen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectSubpurity domainen_US
dc.subjectFlat modulesen_US
dc.titleOn the structure of modules defined by opposites of FP injectivityen_US
dc.typeArticleen_US
dc.institutionauthorBüyükaşık, Engin-
dc.institutionauthorKafkas Demirci, Gizem-
dc.institutionauthorBüyükaşık, Engin
dc.institutionauthorKafkas Demirci, Gizem
dc.departmentİzmir Institute of Technology. Mathematicsen_US
dc.identifier.volume45en_US
dc.identifier.issue3en_US
dc.identifier.startpage729en_US
dc.identifier.endpage736en_US
dc.identifier.wosWOS:000468928200007en_US
dc.identifier.scopus2-s2.0-85066146780en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.doi10.1007/s41980-018-0161-3-
dc.relation.doi10.1007/s41980-018-0161-3en_US
dc.coverage.doi10.1007/s41980-018-0161-3en_US
dc.identifier.wosqualityQ3-
dc.identifier.scopusqualityQ2-
item.fulltextWith Fulltext-
item.grantfulltextopen-
item.languageiso639-1en-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.openairetypeArticle-
crisitem.author.dept04.02. Department of Mathematics-
Appears in Collections:Mathematics / Matematik
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File Description SizeFormat 
Büyükaşık-Kafkas.pdfMakale (Article)393.53 kBAdobe PDFThumbnail
View/Open
Show simple item record



CORE Recommender

Page view(s)

268
checked on Nov 18, 2024

Download(s)

92
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.