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Abstract
Let R be a ring with unity and let MR and RN be right and left modules,
respectively. Themodule MR is said to be absolutely RN -pure if M⊗N → L⊗N is a
monomorphism for every extension LR ofMR . For amoduleMR , the subpurity domain
of MR is defined to be the collection of all modules RN , such that MR is absolutely
RN -pure. Clearly, MR is absolutely RF-pure for every flat module RF and that MR

is FP-injective if the subpurity domain of M is the entire class of left modules. As
an opposite of FP-injective modules, MR is said to be a test for flatness by subpurity
(or t.f.b.s. for short) if its subpurity domain is as small as possible, namely, consisting
of exactly the flat left modules. We characterize the structure of t.f.b.s. modules over
commutative hereditary Noetherian rings. We prove that a module M is t.f.b.s. over
a commutative hereditary Noetherian ring if and only if M/Z(M) is t.f.b.s. if and
only if Hom(M/Z(M), S) �= 0 for each singular simple module S. Prüfer domains
are characterized as those domains all of whose nonzero finitely generated ideals are
t.f.b.s.
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1 Introduction and Preliminaries

Throughout this paper, rings are associative with unity and modules are unitary right
modules. Given right module M and a left module N , M is said to be absolutely
N -pure if M ⊗ N → L ⊗ N is a monomorphism for every extension LR of MR .
The subpurity domain of M , denoted as S p(M), is collection of all left modules N ,
such that M is absolutely N -pure. It is clear that M is FP-injective if and only if
S p(M) = R-Mod . Flat left modules are contained in the subpurity domain of each
right module. As in [6], M is called test for flatness by subpurity (or, t.f.b.s. for short)
if its subpurity domain of M is exactly the class of flat left modules. For further results
about t.f.b.s. modules, we refer to [6].

In this paper, we characterize t.f.b.s. modules over commutative hereditary
Noetherian rings. We prove that over a commutative hereditary Noetherian ring M
is t.f.b.s. if and only if M/Z(M) is t.f.b.s. if and only if Hom(M/Z(M), S) �= 0 for
every singular simple R-module S. A commutative domain R is Prüfer if and only
if every nonzero finitely generated ideal of R is t.f.b.s. if and only if every finitely
generated module M with Hom(M, R) �= 0 is t.f.b.s. In particular, over a Prüfer
domain, a finitely generated R-module M is t.f.b.s. if and only if T (M) �= M , where
T (M) is the torsion part of M .

A module M is said to be A-subinjective if for every extension B of A any
homomorphism ϕ : A → M can be extended to a homomorphism φ : B → M
(see [5]). It is easy to see that M is injective if and only if M is A-subinjective for each
module A. In [1], a module A is said to be a test for injectivity by subinjectivity (or
t.i.b.s.) if whenever a module M is A-subinjective implies M is injective. It is known
that every t.i.b.s. module is t.f.b.s. by [6, Proposition 3.9]. We prove that a finitely
generated abelian group G is t.i.b.s. if and only if G is t.f.b.s.

In [7], the author investigates the absolutely pure domain of a left module N as the
collection of all right modules M , such that M is absolutely N -pure. Absolutely pure
domain of any module consists of the class of FP-injective modules. A left module N
is said to be f -indigent if its absolutely pure domain is exactly the class of FP-injective
right modules. We proved that if R is a left Noetherian, right and left I F-ring, then a
right module M is f -indigent if and only if M is t.f.b.s. Following [3], a right module
M is called f -test module if for every left module N , and Tor1(M, N ) = 0 implies N
is flat. If R is a right I F-ring, then a right R-module N is t.f.b.s. if and only if E(N )/N
is f -test. We showed that t.f.b.s., f -indigent, and f -test modules are not comparable,
in general.

For a ring R and a right module M , E(M), Rad(M), Soc(M), Z(M) will,
respectively, denote the injective hull, Jacobson radical, socle, and singular submodule
of M . The character module HomZ(M,Q/Z)will be denoted by M+. By N ≤ M , we
mean that N is a submodule of M . For additional terminology, concepts, and results
not mentioned here, we refer the reader to [4,12,16].

2 Preliminaries

In this section, we recall some known results that will be used in the sequel.
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Proposition 2.1 Let R be a ring and M, N be right modules. The following are hold.

(1) [15, Theorem 3] R is right Noetherian if and only if each FP-injective right module
is injective.

(2) [10, Proposition 2.3] If R is nonsingular commutative ring, then all nonsingular
modules are flat if and only if R is semihereditary.

(3) [8, Theorem 3.2.10] M is flat if and only if M+ is injective.
(4) [8, Theorem 3.2.16] If R is right Noetherian, M is injective if and only if M+ is

flat.
(5) [8, Theorem3.2.11] If M is finitely presented then M⊗R N+ ∼= HomR(MR, NR)+.
(6) [11, Exercise 12, pp. 139] If R is right nonsingular and right finite-dimensional

ring, then all flat right modules are nonsingular.

Proposition 2.2 [6, Proposition 2.8] Let F be a flat right module. Suppose that F is
absolutely M-pure for some left module M. Then, F is absolutely K -pure for any
submodule K of M. In other words, the subpurity domain of any flat right module is
closed under submodules.

Proposition 2.3 [6, Proposition 2.10] A ring R is right semihereditary if and only if
whenever a right module M is absolutely N-pure for some left module N, then M/K
is absolutely N-pure for each K ≤ M.

Corollary 2.4 Let R be a right semihereditary ring and M be a right R-module. If
M/K is t.f.b.s. for some submodule K of M, then M is t.f.b.s.

Proposition 2.5 [6, Proposition 3.2] The following hold for a right R-module M.

(1) If M has a pure submodule N which is t.f.b.s., then M is t.f.b.s.
(2) If M is t.f.b.s., then M ⊕ N is t.f.b.s. for any module N.
(3) If A be an FP-injective right module, then M ⊕ A is t.f.b.s. if and only if M is

t.f.b.s.
(4) M is t.f.b.s. if and only if Mn is t.f.b.s. for some n ≥ 1

3 t.f.b.s. Modules Over Commutative Rings

In this section, we deal with t.f.b.s. modules over commutative rings. It is shown that a
commutative domain is Prüfer if and only if each finitely generated ideal is t.f.b.s. We
also give a complete characterization of t.f.b.s. modules over commutative hereditary
Noetherian rings.

Theorem 3.1 The following are equivalent for a commutative domain R.

(1) R is Prüfer.
(2) R is t.f.b.s.
(3) Every nonzero finitely generated ideal is t.f.b.s.
(4) A finitely generated R-module M is t.f.b.s. when Hom(M, R) �= 0.

Proof (1) ⇔ (2) By [6, Corollary 3.7].
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(1) ⇒ (3) Let I be a nonzero finitely generated ideal of R. Since R is Prüfer and
I is finitely generated, I is projective by [9, Theorem 2.7]. We shall first prove that
Q.I �= I for each maximal ideal of Q of R. Suppose the contrary that P.I = I for
some maximal ideal P of R. Then, the localization at P gives IP = (I .P)P = IP .PP .
Note that RP is a local ring with unique maximal ideal PP . Since IP is a finitely
generated ideal of RP , IP = IP .PP implies IP = 0 by Nakayama’s Lemma. As R is
a domain, IP = 0 implies I = 0. Contradiction. Therefore, we have I .Q �= I for each
maximal ideal Q of R. Therefore, I/(Q.I ) is nonzero and semisimple both as an R/Q
-module and as an R-module. From I/(Q.I ) ∼= (R/Q)n , n ≥ 1, we conclude that
Hom(I , R/Q) �= 0 for all maximal ideals Q of R. Thus, I is a projective generator
by [4, Proposition 17.9]. Therefore, there is an epimorphism f : I k → R. Then,
I k ∼= R ⊕ L for some L ≤ I k , by projectivity of R. Now, the hypothesis (2) and
Proposition 2.5(2) together imply that I k is a t.f.b.s. R-module. Hence, I is t.f.b.s. by
Proposition 2.5(4). This proves (3).

(3) ⇒ (2) is clear.
(3) ⇒ (4) Let M be a finitely generated module. Let 0 �= f ∈ Hom(M, R). Then,

f (M) is a nonzero finitely generated ideal of R, and hence, f (M) is projective by the
equivalence (1) ⇔ (3). Therefore, M ∼= f (M) ⊕ K for some K ≤ M . Since f (M)

is t.f.b.s. by (3), the module M is t.f.b.s. by Proposition 2.5(2).
(4) ⇒ (2) is clear. �

Over a Prüfer domain, each finitely generated module can be written as a direct sum

of its torsion submodule and a projective submodule by [9, Corollary 2.9]. Hence, the
following is clear by Theorem 3.1.

Corollary 3.2 Let R be a Prüfer domain and M be a finitely generated R-module. M
is t.f.b.s. if and only if T (M) �= M.

Corollary 3.3 Let R be a Prüfer Domain and M be an R-module. If M/T (M) is t.f.b.s.,
then M is t.f.b.s.

Remark 3.4 Let R be a commutative Noetherian ring and S be a simple R-module.
Then, being injective, flat and projective are equivalent for S see, for example [2,
Lemma 3.4].

Theorem 3.5 Let R be a commutative hereditary Noetherian ring and F be a flat
R-module. The following are equivalent.

(1) F is a t.f.b.s. R-module.
(2) Hom(F, S) �= 0 for each singular simple R-module S.
(3) F · Q �= F for each essential maximal ideal Q of R.

Proof (1) ⇒ (2) Suppose F is a t.f.b.s. R-module and S ∼= R/I is a singular simple
R-module, where I is a maximal ideal of R. Then, S is non injective by Remark 3.4.
Thus, F is not absolutely S-pure, and so, in particular F ⊗ S �= 0. This implies that

F ⊗ S ∼= F ⊗ R/I ∼= F/F I �= 0.
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Therefore, F has a maximal submodule K , such that F/K ∼= R/I . This implies that
Hom(F, S) �= 0.

(2) ⇒ (1) Assume the contrary that F is not t.f.b.s. Then, there is a non-flat
R-module M , such that F is absolutely M-pure. Since M is not flat and the ring is
hereditary, Z(M) �= 0 by Proposition 2.1(2). Therefore, Z(M) contains a (singular)
simple R-module, say S, by [14, Proposition 4.5, pp. 161]. Set E = E(F). As F is
flat and absolutely M-pure, F ⊗ S → E ⊗ S is a monomorphism by Proposition 2.2.
Since E is injective and R is Noetherian, E+ is flat by Proposition 2.1(4). Then, E+ is
nonsingular by Proposition 2.1(6). Then, (E ⊗ S)+ ∼= Hom(S, E+) = 0, because S
is singular and E+ is nonsingular. Therefore, E ⊗ S = 0 and F ⊗ S = 0. This implies
that Hom(F, S) = 0. Contradiction. Hence, M is nonsingular, i.e., flat. This implies
that F is t.f.b.s.

(2) ⇔ (3) This implication follows from the fact that R/I is singular for some
ideal I of R if and only if I is essential in R by [11, Proposition 1.21]. �

Lemma 3.6 Let R be a commutative Noetherian ring and M be an R-module. If
M ⊗ R/P = 0 for some maximal ideal P of R, then M ⊗ E(R/P) = 0, where
E(R/P) is the injective hull of R/P.

Proof For each i ∈ Z+, let Ai = {x ∈ E(R/P)|Pi x = 0}. Then, Ai is finitely
generated for each i ∈ Z+ and E(R/P) = ⋃

i∈Z+ Ai by [13, Theorem 3.4]. Then, Ai

is a finitely generated module over the Artinian ring R/Pi . Therefore, Ai has a finite
composition length for each i ∈ Z+. Let

0 = T0 ≤ T1 ≤ · · · ≤ Tn = Ai

be a composition series of Ai . Then Tk+1/Tk ∼= R/P for each k = 0, . . . , i − 1.
Consider the sequence

M ⊗ T1 → M ⊗ T2 → M ⊗ (T2/T1).

Now, M ⊗ R/P = 0 implies that M ⊗ T1 = M ⊗ (T2/T1) = 0, and so, M ⊗ T2 = 0.
In the next step, from the sequence

M ⊗ T2 → M ⊗ T3 → M ⊗ (T3/T2),

weobtainM⊗T3 = 0. Continuing in thisway, at the last step,we shall getM⊗Ai = 0.
This fact together with E(R/P) = ⋃

i∈Z+ Ai implies that M ⊗ E(R/P) = 0. This
completes the proof. �


Now, we are in a position to prove our main theorem. Note that for every module
M over a nonsingular ring, the module M/Z(M) is nonsingular (see [11, Proposition
1.23(a)]).

Theorem 3.7 Let R be a commutative hereditary Noetherian ring and N be an
R-module. The following are equivalent.

(1) N is t.f.b.s.
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(2) N/Z(N ) is t.f.b.s.
(3) Hom(N/Z(N ), S) �= 0 for every singular simple R-module S.
(4) N/Z(N ) ⊗ S �= 0 for every singular simple R-module S.

Proof (1) ⇒ (4) Assume (1), and suppose the contrary that N/Z(N ) ⊗ S = 0 for
some singular simple R-module S. Then, N/Z(N ) ⊗ E(S) = 0 by Lemma 3.6. On
the other hand

(Z(N ) ⊗ E(S))+ ∼= Hom(Z(N ), E(S)+) = 0,

because Z(N ) is singular, and E(S)+ is nonsingular by Propositions 2.1(4) and 2.1(6).
Thus, Z(N ) ⊗ E(S) = 0. Therefore, from the sequence

Z(N ) ⊗ E(S) → N ⊗ E(S) → N/Z(N ) ⊗ E(S),

we obtain that N ⊗ E(S) = 0. This means that N is absolutely E(S)-pure, and so,
E(S) is flat by (1). Then, E(S) is nonsingular by Proposition 2.1(6). This contradicts
with the fact that E(S) is singular. Therefore, we must have N/Z(N ) ⊗ S �= 0.

(2) ⇒ (1) Suppose N is an absolutely A-pure module for some R-module A. Then,
N/Z(N ) is absolutely A-pure by Proposition 2.3. By (2) N/Z(N ) is t.f.b.s., so A is
flat. This implies that N is t.f.b.s.

(2) ⇔ (3) The module N/Z(N ) is nonsingular, i.e., flat by Proposition 2.1(2).
Therefore, the proof is clear by Theorem 3.5.

(3) ⇔ (4) Clear. �

Recall that a nonzero elementa of aPrincipal ideal domain is irreducible ifwhenever

a = b.c for some b, c ∈ R, then either b or c is a unit in R.

Corollary 3.8 Let R be a Principal Ideal Domain. Then, an R-module G is t.f.b.s. if
and only if G/T (G) �= p(G/T (G)) for every irreducible element p in R.

By [1, Theorem 26], an abelian group G is t.i.b.s. if and only if G contains a
direct summand isomorphic to Z. Now, the following is clear by Corollary 3.8 and [1,
Theorem 26].

Corollary 3.9 Let G be a finitely generated abelian group. Then, the following are
equivalent.

(1) G is t.f.b.s.
(2) G is t.i.b.s.
(3) T (G) �= G.

Every t.i.b.s. module is t.f.b.s. by [6, Proposition 3.9]. The following example
shows that there are t.f.b.s. Z-modules which are not t.i.b.s.

Example 3.10 Consider the abelian group G = ∑
Z. 1p , where p ranges over the set of

all prime integers. Then, it is clear that G �= pG for each prime p. Thus, G is t.f.b.s.
by Corollary 3.9. Note that G is indecomposable and not isomorphic to Z. Therefore,
G is not t.i.b.s. by [1, Theorem 26].
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Following [3], a right module M is called f -test module if for every left module N ,
Tor1(M, N ) = 0 implies that N is flat. A ring R is called right I F if every injective
right R-module is flat. Every right QF-ring is right I F .

Proposition 3.11 Let R be a right I F-ring. A right R-module N is t.f.b.s. if and only
if E(N )/N is f-test.

Proof Let K be a left module. Since R is right I F , Tor1(E(N ), K ) = 0. Therefore,
applying the functor − ⊗ K to the the short exact sequence 0 → N → E(N ) →
E(N )/N → 0, we obtain the exact sequence

0 = Tor1(E(N ), K ) → Tor1(E(N )/N , K ) → N ⊗ K

→ E(N ) ⊗ K → E(N )/N ⊗ K → 0.

From which it is easy to see that N is t.f.b.s. if and only if E(N )/N is f -test. �

A right module M is said to be f -indigent if whenever a left module N is absolutely

M-pure, then N is FP-injective.

Proposition 3.12 If R is a left Noetherian, right and left I F-ring, then a right module
M is f -indigent if and only if M is t.f.b.s.

Proof Suppose that MR is absolutely RN -pure for any left module RN , i.e., the
sequence 0 → M ⊗ N → E(M) ⊗ N is monic. Then, we get the following
commutative diagram

M ⊗ N

f

h
E(M) ⊗ N

t

M ⊗ E(N )
g

E(M) ⊗ E(N )

induced by the inclusions M → E(M) and N → E(N ). Since R is right I F-ring,
t is monic. Then, by commutativity of the diagram, g f = th is a monomorphism.
Then, f is a monomorphism, and so, RN is absolutely MR-pure by [7, Proposition
2.2]. Since MR is f -indigent, RN is FP-injective. Since R is left Noetherian and left
I F-ring, RN is flat. Conversely, suppose that RN is absolutely MR-pure for some left
module RN , i.e., 0 → M ⊗ N → M ⊗ E(N ) is monic. Since R is left I F-ring, g is
monic. Then, by the commutativity of diagram, g f = th is a monomorphism. Then,
h is a monomorphism, and so, MR is absolutely RN -pure by [6, Lemma 2.3]. Since
MR is t.f.b.s., RN is flat. Then, RN is FP-injective by Corollary [7, Corollary 3.1]. �


The following example shows that t.f.b.s., f -indigent, and f -test modules are not
comparable, in general.

Example 3.13 Consider the semisimple Z-module ⊕Zp, where p ranges over all
primes and Zp is the simple Z-module of order p. Then, ⊕Zp is both f -
indigent and f -test, by [7, Corollary 5.1] and [3, Corollary 4.20], respectively. The
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module Zp is not t.f.b.s. by Theorem 3.7. On the other hand, the ring of integers Z
is t.i.b.s. by Theorem 3.7. However, Z is neither f -indigent nor f -test again by [7,
Corollary 5.1] and [3, Corollary 4.20], respectively.
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