ORIGINAL PAPER

On the Structure of Modules Defined by Opposites of FP Injectivity

Engin Büyükaşık¹ • Gizem Kafkas-Demirci¹

Received: 2 June 2018 / Accepted: 28 August 2018 / Published online: 3 September 2018 © Iranian Mathematical Society 2018

Abstract

Let R be a ring with unity and let M_R and R^N be right and left modules, respectively. The module M_R is said to be absolutely R^N -pure if $R^N o R^N o R^N$

Keywords Subpurity domain · Flat modules

Mathematics Subject Classification $16D40 \cdot 16D50 \cdot 16D60 \cdot 16D70 \cdot 16E30$

Communicated by Siamak Yassemi.

Engin Büyükaşık enginbuyukasik@iyte.edu.tr Gizem Kafkas-Demirci gizemkafkas@gmail.com

Department of Mathematics, Izmir Institute of Technology, 35430 Urla, Izmir, Turkey

1 Introduction and Preliminaries

Throughout this paper, rings are associative with unity and modules are unitary right modules. Given right module M and a left module N, M is said to be absolutely N-pure if $M \otimes N \to L \otimes N$ is a monomorphism for every extension L_R of M_R . The subpurity domain of M, denoted as Sp(M), is collection of all left modules N, such that M is absolutely N-pure. It is clear that M is FP-injective if and only if Sp(M) = R-Mod. Flat left modules are contained in the subpurity domain of each right module. As in [6], M is called test for flatness by subpurity (or, t.f.b.s. for short) if its subpurity domain of M is exactly the class of flat left modules. For further results about t.f.b.s. modules, we refer to [6].

In this paper, we characterize t.f.b.s. modules over commutative hereditary Noetherian rings. We prove that over a commutative hereditary Noetherian ring M is t.f.b.s. if and only if M/Z(M) is t.f.b.s. if and only if $Hom(M/Z(M), S) \neq 0$ for every singular simple R-module S. A commutative domain R is Prüfer if and only if every nonzero finitely generated ideal of R is t.f.b.s. if and only if every finitely generated module M with $Hom(M, R) \neq 0$ is t.f.b.s. In particular, over a Prüfer domain, a finitely generated R-module M is t.f.b.s. if and only if $T(M) \neq M$, where T(M) is the torsion part of M.

A module M is said to be A-subinjective if for every extension B of A any homomorphism $\varphi: A \to M$ can be extended to a homomorphism $\varphi: B \to M$ (see [5]). It is easy to see that M is injective if and only if M is A-subinjective for each module A. In [1], a module A is said to be a test for injectivity by subinjectivity (or t.i.b.s.) if whenever a module M is A-subinjective implies M is injective. It is known that every t.i.b.s. module is t.f.b.s. by [6, Proposition 3.9]. We prove that a finitely generated abelian group G is t.i.b.s. if and only if G is t.f.b.s.

In [7], the author investigates the absolutely pure domain of a left module N as the collection of all right modules M, such that M is absolutely N-pure. Absolutely pure domain of any module consists of the class of FP-injective modules. A left module N is said to be f-indigent if its absolutely pure domain is exactly the class of FP-injective right modules. We proved that if R is a left Noetherian, right and left IF-ring, then a right module M is f-indigent if and only if f is t.f.b.s. Following [3], a right module f is called f-test module if for every left module f0, and f1 and f2 is a right f3 is a right f4 is a right f5 is a right f6 is a right f7 indigent, and f7 test modules are not comparable, in general.

For a ring R and a right module M, E(M), Rad(M), Soc(M), Z(M) will, respectively, denote the injective hull, Jacobson radical, socle, and singular submodule of M. The character module $Hom_{\mathbb{Z}}(M, \mathbb{Q}/\mathbb{Z})$ will be denoted by M^+ . By $N \leq M$, we mean that N is a submodule of M. For additional terminology, concepts, and results not mentioned here, we refer the reader to [4,12,16].

2 Preliminaries

In this section, we recall some known results that will be used in the sequel.

Proposition 2.1 *Let R be a ring and M, N be right modules. The following are hold.*

- (1) [15, Theorem 3] *R* is right Noetherian if and only if each FP-injective right module is injective.
- (2) [10, Proposition 2.3] *If R is nonsingular commutative ring, then all nonsingular modules are flat if and only if R is semihereditary.*
- (3) [8, Theorem 3.2.10] M is flat if and only if M^+ is injective.
- (4) [8, Theorem 3.2.16] If R is right Noetherian, M is injective if and only if M^+ is flat.
- (5) [8, Theorem 3.2.11] If M is finitely presented then $M \otimes_R N^+ \cong \operatorname{Hom}_R(M_R, N_R)^+$.
- (6) [11, Exercise 12, pp. 139] *If R is right nonsingular and right finite-dimensional ring, then all flat right modules are nonsingular.*

Proposition 2.2 [6, Proposition 2.8] Let F be a flat right module. Suppose that F is absolutely M-pure for some left module M. Then, F is absolutely K-pure for any submodule K of M. In other words, the subpurity domain of any flat right module is closed under submodules.

Proposition 2.3 [6, Proposition 2.10] A ring R is right semihereditary if and only if whenever a right module M is absolutely N-pure for some left module N, then M/K is absolutely N-pure for each $K \leq M$.

Corollary 2.4 Let R be a right semihereditary ring and M be a right R-module. If M/K is t.f.b.s. for some submodule K of M, then M is t.f.b.s.

Proposition 2.5 [6, Proposition 3.2] *The following hold for a right R-module M*.

- (1) If M has a pure submodule N which is t.f.b.s., then M is t.f.b.s.
- (2) If M is t.f.b.s., then $M \oplus N$ is t.f.b.s. for any module N.
- (3) If A be an FP-injective right module, then $M \oplus A$ is t.f.b.s. if and only if M is t.f.b.s.
- (4) M is t.f.b.s. if and only if M^n is t.f.b.s. for some $n \ge 1$

3 t.f.b.s. Modules Over Commutative Rings

In this section, we deal with t.f.b.s. modules over commutative rings. It is shown that a commutative domain is Prüfer if and only if each finitely generated ideal is t.f.b.s. We also give a complete characterization of t.f.b.s. modules over commutative hereditary Noetherian rings.

Theorem 3.1 *The following are equivalent for a commutative domain R.*

- (1) R is Prüfer.
- (2) R is t.f.b.s.
- (3) Every nonzero finitely generated ideal is t.f.b.s.
- (4) A finitely generated R-module M is t.f.b.s. when $\operatorname{Hom}(M, R) \neq 0$.

Proof (1) \Leftrightarrow (2) By [6, Corollary 3.7].

- $(1)\Rightarrow (3)$ Let I be a nonzero finitely generated ideal of R. Since R is Prüfer and I is finitely generated, I is projective by [9, Theorem 2.7]. We shall first prove that $Q.I \neq I$ for each maximal ideal of Q of R. Suppose the contrary that P.I = I for some maximal ideal P of R. Then, the localization at P gives $I_P = (I.P)_P = I_P.P_P$. Note that R_P is a local ring with unique maximal ideal P_P . Since I_P is a finitely generated ideal of R_P , $I_P = I_P.P_P$ implies $I_P = 0$ by Nakayama's Lemma. As R is a domain, $I_P = 0$ implies I = 0. Contradiction. Therefore, we have $I.Q \neq I$ for each maximal ideal Q of R. Therefore, I/(Q.I) is nonzero and semisimple both as an R/Q-module and as an R-module. From $I/(Q.I) \cong (R/Q)^n$, $n \geq 1$, we conclude that $Hom(I, R/Q) \neq 0$ for all maximal ideals Q of R. Thus, I is a projective generator by [4, Proposition 17.9]. Therefore, there is an epimorphism $f: I^k \to R$. Then, $I^k \cong R \oplus L$ for some $I \leq I^k$, by projectivity of I. Now, the hypothesis (2) and Proposition 2.5(2) together imply that I^k is a t.f.b.s. I^k -module. Hence, I^k is t.f.b.s. by Proposition 2.5(4). This proves (3).
 - $(3) \Rightarrow (2)$ is clear.
- $(3) \Rightarrow (4)$ Let M be a finitely generated module. Let $0 \neq f \in \text{Hom}(M, R)$. Then, f(M) is a nonzero finitely generated ideal of R, and hence, f(M) is projective by the equivalence $(1) \Leftrightarrow (3)$. Therefore, $M \cong f(M) \oplus K$ for some $K \leq M$. Since f(M) is t.f.b.s. by (3), the module M is t.f.b.s. by Proposition 2.5(2).

$$(4) \Rightarrow (2)$$
 is clear.

Over a Prüfer domain, each finitely generated module can be written as a direct sum of its torsion submodule and a projective submodule by [9, Corollary 2.9]. Hence, the following is clear by Theorem 3.1.

Corollary 3.2 Let R be a Prüfer domain and M be a finitely generated R-module. M is t.f.b.s. if and only if $T(M) \neq M$.

Corollary 3.3 *Let R be a Prüfer Domain and M be an R-module. If M/T(M) is t.f.b.s., then M is t.f.b.s.*

Remark 3.4 Let R be a commutative Noetherian ring and S be a simple R-module. Then, being injective, flat and projective are equivalent for S see, for example [2, Lemma 3.4].

Theorem 3.5 Let R be a commutative hereditary Noetherian ring and F be a flat R-module. The following are equivalent.

- (1) F is a t.f.b.s. R-module.
- (2) $\operatorname{Hom}(F, S) \neq 0$ for each singular simple R-module S.
- (3) $F \cdot Q \neq F$ for each essential maximal ideal Q of R.

Proof (1) \Rightarrow (2) Suppose F is a t.f.b.s. R-module and $S \cong R/I$ is a singular simple R-module, where I is a maximal ideal of R. Then, S is non injective by Remark 3.4. Thus, F is not absolutely S-pure, and so, in particular $F \otimes S \neq 0$. This implies that

$$F \otimes S \cong F \otimes R/I \cong F/FI \neq 0$$
.

Therefore, F has a maximal submodule K, such that $F/K \cong R/I$. This implies that $\text{Hom}(F, S) \neq 0$.

 $(2) \Rightarrow (1)$ Assume the contrary that F is not t.f.b.s. Then, there is a non-flat R-module M, such that F is absolutely M-pure. Since M is not flat and the ring is hereditary, $Z(M) \neq 0$ by Proposition 2.1(2). Therefore, Z(M) contains a (singular) simple R-module, say S, by [14, Proposition 4.5, pp. 161]. Set E = E(F). As F is flat and absolutely M-pure, $F \otimes S \to E \otimes S$ is a monomorphism by Proposition 2.2. Since E is injective and R is Noetherian, E^+ is flat by Proposition 2.1(4). Then, E^+ is nonsingular by Proposition 2.1(6). Then, $(E \otimes S)^+ \cong \operatorname{Hom}(S, E^+) = 0$, because S is singular and E^+ is nonsingular. Therefore, $E \otimes S = 0$ and E^+ is nonsingular. This implies that E^+ is t.f.b.s.

(2) \Leftrightarrow (3) This implication follows from the fact that R/I is singular for some ideal I of R if and only if I is essential in R by [11, Proposition 1.21].

Lemma 3.6 Let R be a commutative Noetherian ring and M be an R-module. If $M \otimes R/P = 0$ for some maximal ideal P of R, then $M \otimes E(R/P) = 0$, where E(R/P) is the injective hull of R/P.

Proof For each $i \in \mathbb{Z}^+$, let $A_i = \{x \in E(R/P) | P^i x = 0\}$. Then, A_i is finitely generated for each $i \in \mathbb{Z}^+$ and $E(R/P) = \bigcup_{i \in \mathbb{Z}^+} A_i$ by [13, Theorem 3.4]. Then, A_i is a finitely generated module over the Artinian ring R/P^i . Therefore, A_i has a finite composition length for each $i \in \mathbb{Z}^+$. Let

$$0 = T_0 \le T_1 \le \cdots \le T_n = A_i$$

be a composition series of A_i . Then $T_{k+1}/T_k \cong R/P$ for each k = 0, ..., i-1. Consider the sequence

$$M \otimes T_1 \rightarrow M \otimes T_2 \rightarrow M \otimes (T_2/T_1).$$

Now, $M \otimes R/P = 0$ implies that $M \otimes T_1 = M \otimes (T_2/T_1) = 0$, and so, $M \otimes T_2 = 0$. In the next step, from the sequence

$$M \otimes T_2 \rightarrow M \otimes T_3 \rightarrow M \otimes (T_3/T_2),$$

we obtain $M \otimes T_3 = 0$. Continuing in this way, at the last step, we shall get $M \otimes A_i = 0$. This fact together with $E(R/P) = \bigcup_{i \in \mathbb{Z}^+} A_i$ implies that $M \otimes E(R/P) = 0$. This completes the proof.

Now, we are in a position to prove our main theorem. Note that for every module M over a nonsingular ring, the module M/Z(M) is nonsingular (see [11, Proposition 1.23(a)]).

Theorem 3.7 Let R be a commutative hereditary Noetherian ring and N be an R-module. The following are equivalent.

(1) N is t.f.b.s.

- (2) N/Z(N) is t.f.b.s.
- (3) $\operatorname{Hom}(N/Z(N), S) \neq 0$ for every singular simple R-module S.
- (4) $N/Z(N) \otimes S \neq 0$ for every singular simple R-module S.

Proof (1) \Rightarrow (4) Assume (1), and suppose the contrary that $N/Z(N) \otimes S = 0$ for some singular simple *R*-module *S*. Then, $N/Z(N) \otimes E(S) = 0$ by Lemma 3.6. On the other hand

$$(Z(N) \otimes E(S))^+ \cong \operatorname{Hom}(Z(N), E(S)^+) = 0,$$

because Z(N) is singular, and $E(S)^+$ is nonsingular by Propositions 2.1(4) and 2.1(6). Thus, $Z(N) \otimes E(S) = 0$. Therefore, from the sequence

$$Z(N) \otimes E(S) \rightarrow N \otimes E(S) \rightarrow N/Z(N) \otimes E(S),$$

we obtain that $N \otimes E(S) = 0$. This means that N is absolutely E(S)-pure, and so, E(S) is flat by (1). Then, E(S) is nonsingular by Proposition 2.1(6). This contradicts with the fact that E(S) is singular. Therefore, we must have $N/Z(N) \otimes S \neq 0$.

- $(2) \Rightarrow (1)$ Suppose N is an absolutely A-pure module for some R-module A. Then, N/Z(N) is absolutely A-pure by Proposition 2.3. By (2) N/Z(N) is t.f.b.s., so A is flat. This implies that N is t.f.b.s.
- (2) \Leftrightarrow (3) The module N/Z(N) is nonsingular, i.e., flat by Proposition 2.1(2). Therefore, the proof is clear by Theorem 3.5.

$$(3) \Leftrightarrow (4)$$
 Clear.

Recall that a nonzero element a of a Principal ideal domain is irreducible if whenever a = b.c for some $b, c \in R$, then either b or c is a unit in R.

Corollary 3.8 Let R be a Principal Ideal Domain. Then, an R-module G is t.f.b.s. if and only if $G/T(G) \neq p(G/T(G))$ for every irreducible element p in R.

By [1, Theorem 26], an abelian group G is t.i.b.s. if and only if G contains a direct summand isomorphic to \mathbb{Z} . Now, the following is clear by Corollary 3.8 and [1, Theorem 26].

Corollary 3.9 Let G be a finitely generated abelian group. Then, the following are equivalent.

- (1) G is t.f.b.s.
- (2) G is t.i.b.s.
- (3) $T(G) \neq G$.

Every t.i.b.s. module is t.f.b.s. by [6, Proposition 3.9]. The following example shows that there are t.f.b.s. Z-modules which are not t.i.b.s.

Example 3.10 Consider the abelian group $G = \sum \mathbb{Z}.\frac{1}{p}$, where p ranges over the set of all prime integers. Then, it is clear that $G \neq pG$ for each prime p. Thus, G is t.f.b.s. by Corollary 3.9. Note that G is indecomposable and not isomorphic to \mathbb{Z} . Therefore, G is not t.i.b.s. by [1, Theorem 26].

Following [3], a right module M is called f-test module if for every left module N, $Tor_1(M, N) = 0$ implies that N is flat. A ring R is called right IF if every injective right R-module is flat. Every right QF-ring is right IF.

Proposition 3.11 Let R be a right IF-ring. A right R-module N is t.f.b.s. if and only if E(N)/N is f-test.

Proof Let K be a left module. Since R is right IF, $Tor_1(E(N), K) = 0$. Therefore, applying the functor $- \otimes K$ to the short exact sequence $0 \to N \to E(N) \to E(N)/N \to 0$, we obtain the exact sequence

$$0 = Tor_1(E(N), K) \to Tor_1(E(N)/N, K) \to N \otimes K$$
$$\to E(N) \otimes K \to E(N)/N \otimes K \to 0.$$

From which it is easy to see that N is t.f.b.s. if and only if E(N)/N is f-test.

A right module M is said to be f-indigent if whenever a left module N is absolutely M-pure, then N is FP-injective.

Proposition 3.12 If R is a left Noetherian, right and left IF-ring, then a right module M is f-indigent if and only if M is t-f-t.

Proof Suppose that M_R is absolutely $_RN$ -pure for any left module $_RN$, i.e., the sequence $0 \to M \otimes N \to E(M) \otimes N$ is monic. Then, we get the following commutative diagram

$$M \otimes N \xrightarrow{h} E(M) \otimes N$$

$$\downarrow f \qquad \qquad \downarrow t$$

$$M \otimes E(N) \xrightarrow{g} E(M) \otimes E(N)$$

induced by the inclusions $M \to E(M)$ and $N \to E(N)$. Since R is right IF-ring, t is monic. Then, by commutativity of the diagram, gf = th is a monomorphism. Then, f is a monomorphism, and so, ${}_RN$ is absolutely M_R -pure by [7, Proposition 2.2]. Since M_R is f-indigent, ${}_RN$ is FP-injective. Since R is left Noetherian and left IF-ring, ${}_RN$ is flat. Conversely, suppose that ${}_RN$ is absolutely M_R -pure for some left module ${}_RN$, i.e., $0 \to M \otimes N \to M \otimes E(N)$ is monic. Since R is left IF-ring, g is monic. Then, by the commutativity of diagram, gf = th is a monomorphism. Then, h is a monomorphism, and so, M_R is absolutely ${}_RN$ -pure by [6, Lemma 2.3]. Since M_R is t.f.b.s., ${}_RN$ is flat. Then, ${}_RN$ is FP-injective by Corollary [7, Corollary 3.1]. \square

The following example shows that t.f.b.s., f-indigent, and f-test modules are not comparable, in general.

Example 3.13 Consider the semisimple \mathbb{Z} -module $\oplus \mathbb{Z}_p$, where p ranges over all primes and \mathbb{Z}_p is the simple \mathbb{Z} -module of order p. Then, $\oplus \mathbb{Z}_p$ is both f-indigent and f-test, by [7, Corollary 5.1] and [3, Corollary 4.20], respectively. The

module \mathbb{Z}_p is not t.f.b.s. by Theorem 3.7. On the other hand, the ring of integers \mathbb{Z} is t.i.b.s. by Theorem 3.7. However, \mathbb{Z} is neither f-indigent nor f-test again by [7, Corollary 5.1] and [3, Corollary 4.20], respectively.

References

- Alizade, R., Büyükaşık, E., Er, N.: Rings and modules characterized by opposites of injectivity. J. Algebra 409, 182–198 (2014)
- Alizade, R., Büyükaşık, E., Lopez-Permouth, S., Yang, L.: Poor modules with no proper poor direct summands. J. Algebra 502, 24–44 (2018)
- Alizade, R., Durğun, Y.: Test Modules for Flatness. Rend. Semin. Math. Univ. Padova 137, 75–91 (2017)
- 4. Anderson, F.W., Fuller, K.R.: Rings and Categories of Modules. Springer, New-York (1992)
- Aydoğdu, P., López-Permouth, S.R.: An alternative perspective on injectivity of modules. J. Algebra 338, 207–219 (2011)
- Büyükaşık, E., Kafkas-Demirci, G.: Rings and modules characterized by opposites of FP-injectivity (submitted)
- 7. Durğun, Y.: An alternative perspective on flatness of modules. J. Algebra Appl. 15(8) (2016)
- 8. Enochs, E.E., Jenda, O.M.G.: Relative Homological Algebra. Walter de Gruyter, Berlin (2000)
- Fuchs, L., Salce, L.: Modules Over Non-Noetherian Domains. Mathematical Surveys and Monographs, vol. 84. American Mathematical Society, Providence (2001)
- 10. Goodearl, K.R.: Singular torsion and the splitting properties. Mem. Am. Math. Soc., 124 (1972)
- Goodearl, K.R.: Ring Theory. Nonsingular Rings and Modules. Pure and Applied Mathematics, p. 33. Marcel Dekker Inc, New York (1976)
- 12. Lam, T.Y.: Lectures on Modules and Rings. Springer, New York (1999)
- 13. Matlis, E.: Injective modules over Noetherian rings. Pac. J. Math. 8, 511-528 (1958)
- 14. McConnell, J.C., Robson, J.C.: Noncommutative Noetherian Rings. AMS, New-York (2001)
- 15. Megibben, C.: Absolutely pure modules. Proc. Am. Math. Soc. 26, 561–566 (1970)
- 16. Rotman, J.: An Introduction to Homological Algebra. Academic Press, New York (1979)

