Please use this identifier to cite or link to this item:
Title: Color-tunable all-inorganic CsPbBr3 perovskites nanoplatelet films for photovoltaic devices
Authors: Özcan, Mehmet
Özen, Sercan
Topçu, Gökhan
Demir, Mustafa Muammer
Şahin, Hasan
Keywords: Coatings
Issue Date: 2019
Publisher: American Chemical Society
Abstract: Herein, we demonstrate a novel coating approach to fabricate CsPbBr3 perovskite nanoplatelet film with heat-free process via electrospraying from precursor solution. A detailed study is carried out to determine the effect of various parameters such as ligand concentration, electric field, flow rate, etc. on the optical properties. By controlling the volume ratios of the oleylamine (OAm) and oleic acid (OA), the coalescing and thickness of the resulting nanoplatelets can be readily tuned that results in control over emission in the range of 100 nm without any antisolvent crystallization or heating processes. The varying electrical field and flow rate was found as inefficient on the emission characteristics of the films. In addition, the crystal films were obtained under ambient conditions on the ITO coated glass surfaces as in the desired pattern. As a result, we demonstrated a facile and reproducible way of synthesizing and coating of CsPbBr3 perovskite nanoplatelets which is suitable for large-scale production. In this method, the ability of tuning the degree of quantum confinement for perovskite nanoplatelets is promising approach for the one-step fabrication of crystal films that may enable the use in optoelectronics.
ISSN: 2574-0970
Appears in Collections:Materials Science and Engineering / Malzeme Bilimi ve Mühendisliği
Photonics / Fotonik
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection

Files in This Item:
File SizeFormat 
acsanm.9b01035.pdf4.36 MBAdobe PDFView/Open
Show full item record

CORE Recommender


checked on Jun 3, 2023


checked on Jun 3, 2023

Page view(s)

checked on May 22, 2023


checked on May 22, 2023

Google ScholarTM



Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.